Visualization

add_geometry.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import open3d as o3d
import open3d.visualization.gui as gui
import open3d.visualization.rendering as rendering
import platform
import random
import threading
import time

isMacOS = (platform.system() == "Darwin")


# This example shows two methods of adding geometry to an existing scene.
# 1) add via a UI callback (in this case a menu, but a button would be similar,
#    you would call `button.set_on_clicked(self.on_menu_sphere_)` when
#    configuring the button. See `on_menu_sphere()`.
# 2) add asynchronously by polling from another thread. GUI functions must be
#    called from the UI thread, so use Application.post_to_main_thread().
#    See `on_menu_random()`.
# Running the example will show a simple window with a Debug menu item with the
# two different options. The second method will add random spheres for
# 20 seconds, during which time you can be interacting with the scene, rotating,
# etc.
class SpheresApp:
    MENU_SPHERE = 1
    MENU_RANDOM = 2
    MENU_QUIT = 3

    def __init__(self):
        self._id = 0
        self.window = gui.Application.instance.create_window(
            "Add Spheres Example", 1024, 768)
        self.scene = gui.SceneWidget()
        self.scene.scene = rendering.Open3DScene(self.window.renderer)
        self.scene.scene.set_background([1, 1, 1, 1])
        self.scene.scene.scene.set_sun_light(
            [-1, -1, -1],  # direction
            [1, 1, 1],  # color
            100000)  # intensity
        self.scene.scene.scene.enable_sun_light(True)
        bbox = o3d.geometry.AxisAlignedBoundingBox([-10, -10, -10],
                                                   [10, 10, 10])
        self.scene.setup_camera(60, bbox, [0, 0, 0])

        self.window.add_child(self.scene)

        # The menu is global (because the macOS menu is global), so only create
        # it once, no matter how many windows are created
        if gui.Application.instance.menubar is None:
            if isMacOS:
                app_menu = gui.Menu()
                app_menu.add_item("Quit", SpheresApp.MENU_QUIT)
            debug_menu = gui.Menu()
            debug_menu.add_item("Add Sphere", SpheresApp.MENU_SPHERE)
            debug_menu.add_item("Add Random Spheres", SpheresApp.MENU_RANDOM)
            if not isMacOS:
                debug_menu.add_separator()
                debug_menu.add_item("Quit", SpheresApp.MENU_QUIT)

            menu = gui.Menu()
            if isMacOS:
                # macOS will name the first menu item for the running application
                # (in our case, probably "Python"), regardless of what we call
                # it. This is the application menu, and it is where the
                # About..., Preferences..., and Quit menu items typically go.
                menu.add_menu("Example", app_menu)
                menu.add_menu("Debug", debug_menu)
            else:
                menu.add_menu("Debug", debug_menu)
            gui.Application.instance.menubar = menu

        # The menubar is global, but we need to connect the menu items to the
        # window, so that the window can call the appropriate function when the
        # menu item is activated.
        self.window.set_on_menu_item_activated(SpheresApp.MENU_SPHERE,
                                               self._on_menu_sphere)
        self.window.set_on_menu_item_activated(SpheresApp.MENU_RANDOM,
                                               self._on_menu_random)
        self.window.set_on_menu_item_activated(SpheresApp.MENU_QUIT,
                                               self._on_menu_quit)

    def add_sphere(self):
        self._id += 1
        mat = rendering.MaterialRecord()
        mat.base_color = [
            random.random(),
            random.random(),
            random.random(), 1.0
        ]
        mat.shader = "defaultLit"
        sphere = o3d.geometry.TriangleMesh.create_sphere(0.5)
        sphere.compute_vertex_normals()
        sphere.translate([
            10.0 * random.uniform(-1.0, 1.0), 10.0 * random.uniform(-1.0, 1.0),
            10.0 * random.uniform(-1.0, 1.0)
        ])
        self.scene.scene.add_geometry("sphere" + str(self._id), sphere, mat)

    def _on_menu_sphere(self):
        # GUI callbacks happen on the main thread, so we can do everything
        # normally here.
        self.add_sphere()

    def _on_menu_random(self):
        # This adds spheres asynchronously. This pattern is useful if you have
        # data coming in from another source than user interaction.
        def thread_main():
            for _ in range(0, 20):
                # We can only modify GUI objects on the main thread, so we
                # need to post the function to call to the main thread.
                gui.Application.instance.post_to_main_thread(
                    self.window, self.add_sphere)
                time.sleep(1)

        threading.Thread(target=thread_main).start()

    def _on_menu_quit(self):
        gui.Application.instance.quit()


def main():
    gui.Application.instance.initialize()
    SpheresApp()
    gui.Application.instance.run()


if __name__ == "__main__":
    main()

all_widgets.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import open3d.visualization.gui as gui
import os.path

basedir = os.path.dirname(os.path.realpath(__file__))


class ExampleWindow:
    MENU_CHECKABLE = 1
    MENU_DISABLED = 2
    MENU_QUIT = 3

    def __init__(self):
        self.window = gui.Application.instance.create_window("Test", 400, 768)
        # self.window = gui.Application.instance.create_window("Test", 400, 768,
        #                                                        x=50, y=100)
        w = self.window  # for more concise code

        # Rather than specifying sizes in pixels, which may vary in size based
        # on the monitor, especially on macOS which has 220 dpi monitors, use
        # the em-size. This way sizings will be proportional to the font size,
        # which will create a more visually consistent size across platforms.
        em = w.theme.font_size

        # Widgets are laid out in layouts: gui.Horiz, gui.Vert,
        # gui.CollapsableVert, and gui.VGrid. By nesting the layouts we can
        # achieve complex designs. Usually we use a vertical layout as the
        # topmost widget, since widgets tend to be organized from top to bottom.
        # Within that, we usually have a series of horizontal layouts for each
        # row.
        layout = gui.Vert(0, gui.Margins(0.5 * em, 0.5 * em, 0.5 * em,
                                         0.5 * em))

        # Create the menu. The menu is global (because the macOS menu is global),
        # so only create it once.
        if gui.Application.instance.menubar is None:
            menubar = gui.Menu()
            test_menu = gui.Menu()
            test_menu.add_item("An option", ExampleWindow.MENU_CHECKABLE)
            test_menu.set_checked(ExampleWindow.MENU_CHECKABLE, True)
            test_menu.add_item("Unavailable feature",
                               ExampleWindow.MENU_DISABLED)
            test_menu.set_enabled(ExampleWindow.MENU_DISABLED, False)
            test_menu.add_separator()
            test_menu.add_item("Quit", ExampleWindow.MENU_QUIT)
            # On macOS the first menu item is the application menu item and will
            # always be the name of the application (probably "Python"),
            # regardless of what you pass in here. The application menu is
            # typically where About..., Preferences..., and Quit go.
            menubar.add_menu("Test", test_menu)
            gui.Application.instance.menubar = menubar

        # Each window needs to know what to do with the menu items, so we need
        # to tell the window how to handle menu items.
        w.set_on_menu_item_activated(ExampleWindow.MENU_CHECKABLE,
                                     self._on_menu_checkable)
        w.set_on_menu_item_activated(ExampleWindow.MENU_QUIT,
                                     self._on_menu_quit)

        # Create a file-chooser widget. One part will be a text edit widget for
        # the filename and clicking on the button will let the user choose using
        # the file dialog.
        self._fileedit = gui.TextEdit()
        filedlgbutton = gui.Button("...")
        filedlgbutton.horizontal_padding_em = 0.5
        filedlgbutton.vertical_padding_em = 0
        filedlgbutton.set_on_clicked(self._on_filedlg_button)

        # (Create the horizontal widget for the row. This will make sure the
        # text editor takes up as much space as it can.)
        fileedit_layout = gui.Horiz()
        fileedit_layout.add_child(gui.Label("Model file"))
        fileedit_layout.add_child(self._fileedit)
        fileedit_layout.add_fixed(0.25 * em)
        fileedit_layout.add_child(filedlgbutton)
        # add to the top-level (vertical) layout
        layout.add_child(fileedit_layout)

        # Create a collapsible vertical widget, which takes up enough vertical
        # space for all its children when open, but only enough for text when
        # closed. This is useful for property pages, so the user can hide sets
        # of properties they rarely use. All layouts take a spacing parameter,
        # which is the spacinging between items in the widget, and a margins
        # parameter, which specifies the spacing of the left, top, right,
        # bottom margins. (This acts like the 'padding' property in CSS.)
        collapse = gui.CollapsableVert("Widgets", 0.33 * em,
                                       gui.Margins(em, 0, 0, 0))
        self._label = gui.Label("Lorem ipsum dolor")
        self._label.text_color = gui.Color(1.0, 0.5, 0.0)
        collapse.add_child(self._label)

        # Create a checkbox. Checking or unchecking would usually be used to set
        # a binary property, but in this case it will show a simple message box,
        # which illustrates how to create simple dialogs.
        cb = gui.Checkbox("Enable some really cool effect")
        cb.set_on_checked(self._on_cb)  # set the callback function
        collapse.add_child(cb)

        # Create a color editor. We will change the color of the orange label
        # above when the color changes.
        color = gui.ColorEdit()
        color.color_value = self._label.text_color
        color.set_on_value_changed(self._on_color)
        collapse.add_child(color)

        # This is a combobox, nothing fancy here, just set a simple function to
        # handle the user selecting an item.
        combo = gui.Combobox()
        combo.add_item("Show point labels")
        combo.add_item("Show point velocity")
        combo.add_item("Show bounding boxes")
        combo.set_on_selection_changed(self._on_combo)
        collapse.add_child(combo)

        # This is a toggle switch, which is similar to a checkbox. To my way of
        # thinking the difference is subtle: a checkbox toggles properties
        # (for example, purely visual changes like enabling lighting) while a
        # toggle switch is better for changing the behavior of the app (for
        # example, turning on processing from the camera).
        switch = gui.ToggleSwitch("Continuously update from camera")
        switch.set_on_clicked(self._on_switch)
        collapse.add_child(switch)

        self.logo_idx = 0
        proxy = gui.WidgetProxy()

        def switch_proxy():
            self.logo_idx += 1
            if self.logo_idx % 3 == 0:
                proxy.set_widget(None)
            elif self.logo_idx % 3 == 1:
                # Add a simple image
                logo = gui.ImageWidget(basedir + "/icon-32.png")
                proxy.set_widget(logo)
            else:
                label = gui.Label(
                    'Open3D: A Modern Library for 3D Data Processing')
                proxy.set_widget(label)
            w.set_needs_layout()

        logo_btn = gui.Button('Switch Logo By WidgetProxy')
        logo_btn.vertical_padding_em = 0
        logo_btn.background_color = gui.Color(r=0, b=0.5, g=0)
        logo_btn.set_on_clicked(switch_proxy)
        collapse.add_child(logo_btn)
        collapse.add_child(proxy)

        # Widget stack demo
        self._widget_idx = 0
        hz = gui.Horiz(spacing=5)
        push_widget_btn = gui.Button('Push widget')
        push_widget_btn.vertical_padding_em = 0
        pop_widget_btn = gui.Button('Pop widget')
        pop_widget_btn.vertical_padding_em = 0
        stack = gui.WidgetStack()
        stack.set_on_top(lambda w: print(f'New widget is: {w.text}'))
        hz.add_child(gui.Label('WidgetStack '))
        hz.add_child(push_widget_btn)
        hz.add_child(pop_widget_btn)
        hz.add_child(stack)
        collapse.add_child(hz)

        def push_widget():
            self._widget_idx += 1
            stack.push_widget(gui.Label(f'Widget {self._widget_idx}'))

        push_widget_btn.set_on_clicked(push_widget)
        pop_widget_btn.set_on_clicked(stack.pop_widget)

        # Add a list of items
        lv = gui.ListView()
        lv.set_items(["Ground", "Trees", "Buildings", "Cars", "People", "Cats"])
        lv.selected_index = lv.selected_index + 2  # initially is -1, so now 1
        lv.set_max_visible_items(4)
        lv.set_on_selection_changed(self._on_list)
        collapse.add_child(lv)

        # Add a tree view
        tree = gui.TreeView()
        tree.add_text_item(tree.get_root_item(), "Camera")
        geo_id = tree.add_text_item(tree.get_root_item(), "Geometries")
        mesh_id = tree.add_text_item(geo_id, "Mesh")
        tree.add_text_item(mesh_id, "Triangles")
        tree.add_text_item(mesh_id, "Albedo texture")
        tree.add_text_item(mesh_id, "Normal map")
        points_id = tree.add_text_item(geo_id, "Points")
        tree.can_select_items_with_children = True
        tree.set_on_selection_changed(self._on_tree)
        # does not call on_selection_changed: user did not change selection
        tree.selected_item = points_id
        collapse.add_child(tree)

        # Add two number editors, one for integers and one for floating point
        # Number editor can clamp numbers to a range, although this is more
        # useful for integers than for floating point.
        intedit = gui.NumberEdit(gui.NumberEdit.INT)
        intedit.int_value = 0
        intedit.set_limits(1, 19)  # value coerced to 1
        intedit.int_value = intedit.int_value + 2  # value should be 3
        doubleedit = gui.NumberEdit(gui.NumberEdit.DOUBLE)
        numlayout = gui.Horiz()
        numlayout.add_child(gui.Label("int"))
        numlayout.add_child(intedit)
        numlayout.add_fixed(em)  # manual spacing (could set it in Horiz() ctor)
        numlayout.add_child(gui.Label("double"))
        numlayout.add_child(doubleedit)
        collapse.add_child(numlayout)

        # Create a progress bar. It ranges from 0.0 to 1.0.
        self._progress = gui.ProgressBar()
        self._progress.value = 0.25  # 25% complete
        self._progress.value = self._progress.value + 0.08  # 0.25 + 0.08 = 33%
        prog_layout = gui.Horiz(em)
        prog_layout.add_child(gui.Label("Progress..."))
        prog_layout.add_child(self._progress)
        collapse.add_child(prog_layout)

        # Create a slider. It acts very similar to NumberEdit except that the
        # user moves a slider and cannot type the number.
        slider = gui.Slider(gui.Slider.INT)
        slider.set_limits(5, 13)
        slider.set_on_value_changed(self._on_slider)
        collapse.add_child(slider)

        # Create a text editor. The placeholder text (if not empty) will be
        # displayed when there is no text, as concise help, or visible tooltip.
        tedit = gui.TextEdit()
        tedit.placeholder_text = "Edit me some text here"

        # on_text_changed fires whenever the user changes the text (but not if
        # the text_value property is assigned to).
        tedit.set_on_text_changed(self._on_text_changed)

        # on_value_changed fires whenever the user signals that they are finished
        # editing the text, either by pressing return or by clicking outside of
        # the text editor, thus losing text focus.
        tedit.set_on_value_changed(self._on_value_changed)
        collapse.add_child(tedit)

        # Create a widget for showing/editing a 3D vector
        vedit = gui.VectorEdit()
        vedit.vector_value = [1, 2, 3]
        vedit.set_on_value_changed(self._on_vedit)
        collapse.add_child(vedit)

        # Create a VGrid layout. This layout specifies the number of columns
        # (two, in this case), and will place the first child in the first
        # column, the second in the second, the third in the first, the fourth
        # in the second, etc.
        # So:
        #      2 cols             3 cols                  4 cols
        #   |  1  |  2  |   |  1  |  2  |  3  |   |  1  |  2  |  3  |  4  |
        #   |  3  |  4  |   |  4  |  5  |  6  |   |  5  |  6  |  7  |  8  |
        #   |  5  |  6  |   |  7  |  8  |  9  |   |  9  | 10  | 11  | 12  |
        #   |    ...    |   |       ...       |   |         ...           |
        vgrid = gui.VGrid(2)
        vgrid.add_child(gui.Label("Trees"))
        vgrid.add_child(gui.Label("12 items"))
        vgrid.add_child(gui.Label("People"))
        vgrid.add_child(gui.Label("2 (93% certainty)"))
        vgrid.add_child(gui.Label("Cars"))
        vgrid.add_child(gui.Label("5 (87% certainty)"))
        collapse.add_child(vgrid)

        # Create a tab control. This is really a set of N layouts on top of each
        # other, but with only one selected.
        tabs = gui.TabControl()
        tab1 = gui.Vert()
        tab1.add_child(gui.Checkbox("Enable option 1"))
        tab1.add_child(gui.Checkbox("Enable option 2"))
        tab1.add_child(gui.Checkbox("Enable option 3"))
        tabs.add_tab("Options", tab1)
        tab2 = gui.Vert()
        tab2.add_child(gui.Label("No plugins detected"))
        tab2.add_stretch()
        tabs.add_tab("Plugins", tab2)
        tab3 = gui.RadioButton(gui.RadioButton.VERT)
        tab3.set_items(["Apple", "Orange"])

        def vt_changed(idx):
            print(f"current cargo: {tab3.selected_value}")

        tab3.set_on_selection_changed(vt_changed)
        tabs.add_tab("Cargo", tab3)
        tab4 = gui.RadioButton(gui.RadioButton.HORIZ)
        tab4.set_items(["Air plane", "Train", "Bus"])

        def hz_changed(idx):
            print(f"current traffic plan: {tab4.selected_value}")

        tab4.set_on_selection_changed(hz_changed)
        tabs.add_tab("Traffic", tab4)
        collapse.add_child(tabs)

        # Quit button. (Typically this is a menu item)
        button_layout = gui.Horiz()
        ok_button = gui.Button("Ok")
        ok_button.set_on_clicked(self._on_ok)
        button_layout.add_stretch()
        button_layout.add_child(ok_button)

        layout.add_child(collapse)
        layout.add_child(button_layout)

        # We're done, set the window's layout
        w.add_child(layout)

    def _on_filedlg_button(self):
        filedlg = gui.FileDialog(gui.FileDialog.OPEN, "Select file",
                                 self.window.theme)
        filedlg.add_filter(".obj .ply .stl", "Triangle mesh (.obj, .ply, .stl)")
        filedlg.add_filter("", "All files")
        filedlg.set_on_cancel(self._on_filedlg_cancel)
        filedlg.set_on_done(self._on_filedlg_done)
        self.window.show_dialog(filedlg)

    def _on_filedlg_cancel(self):
        self.window.close_dialog()

    def _on_filedlg_done(self, path):
        self._fileedit.text_value = path
        self.window.close_dialog()

    def _on_cb(self, is_checked):
        if is_checked:
            text = "Sorry, effects are unimplemented"
        else:
            text = "Good choice"

        self.show_message_dialog("There might be a problem...", text)

    def _on_switch(self, is_on):
        if is_on:
            print("Camera would now be running")
        else:
            print("Camera would now be off")

    # This function is essentially the same as window.show_message_box(),
    # so for something this simple just use that, but it illustrates making a
    # dialog.
    def show_message_dialog(self, title, message):
        # A Dialog is just a widget, so you make its child a layout just like
        # a Window.
        dlg = gui.Dialog(title)

        # Add the message text
        em = self.window.theme.font_size
        dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
        dlg_layout.add_child(gui.Label(message))

        # Add the Ok button. We need to define a callback function to handle
        # the click.
        ok_button = gui.Button("Ok")
        ok_button.set_on_clicked(self._on_dialog_ok)

        # We want the Ok button to be an the right side, so we need to add
        # a stretch item to the layout, otherwise the button will be the size
        # of the entire row. A stretch item takes up as much space as it can,
        # which forces the button to be its minimum size.
        button_layout = gui.Horiz()
        button_layout.add_stretch()
        button_layout.add_child(ok_button)

        # Add the button layout,
        dlg_layout.add_child(button_layout)
        # ... then add the layout as the child of the Dialog
        dlg.add_child(dlg_layout)
        # ... and now we can show the dialog
        self.window.show_dialog(dlg)

    def _on_dialog_ok(self):
        self.window.close_dialog()

    def _on_color(self, new_color):
        self._label.text_color = new_color

    def _on_combo(self, new_val, new_idx):
        print(new_idx, new_val)

    def _on_list(self, new_val, is_dbl_click):
        print(new_val)

    def _on_tree(self, new_item_id):
        print(new_item_id)

    def _on_slider(self, new_val):
        self._progress.value = new_val / 20.0

    def _on_text_changed(self, new_text):
        print("edit:", new_text)

    def _on_value_changed(self, new_text):
        print("value:", new_text)

    def _on_vedit(self, new_val):
        print(new_val)

    def _on_ok(self):
        gui.Application.instance.quit()

    def _on_menu_checkable(self):
        gui.Application.instance.menubar.set_checked(
            ExampleWindow.MENU_CHECKABLE,
            not gui.Application.instance.menubar.is_checked(
                ExampleWindow.MENU_CHECKABLE))

    def _on_menu_quit(self):
        gui.Application.instance.quit()


# This class is essentially the same as window.show_message_box(),
# so for something this simple just use that, but it illustrates making a
# dialog.
class MessageBox:

    def __init__(self, title, message):
        self._window = None

        # A Dialog is just a widget, so you make its child a layout just like
        # a Window.
        dlg = gui.Dialog(title)

        # Add the message text
        em = self.window.theme.font_size
        dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
        dlg_layout.add_child(gui.Label(message))

        # Add the Ok button. We need to define a callback function to handle
        # the click.
        ok_button = gui.Button("Ok")
        ok_button.set_on_clicked(self._on_ok)

        # We want the Ok button to be an the right side, so we need to add
        # a stretch item to the layout, otherwise the button will be the size
        # of the entire row. A stretch item takes up as much space as it can,
        # which forces the button to be its minimum size.
        button_layout = gui.Horiz()
        button_layout.add_stretch()
        button_layout.add_child(ok_button)

        # Add the button layout,
        dlg_layout.add_child(button_layout)
        # ... then add the layout as the child of the Dialog
        dlg.add_child(dlg_layout)

    def show(self, window):
        self._window = window

    def _on_ok(self):
        self._window.close_dialog()


def main():
    # We need to initialize the application, which finds the necessary shaders for
    # rendering and prepares the cross-platform window abstraction.
    gui.Application.instance.initialize()

    w = ExampleWindow()

    # Run the event loop. This will not return until the last window is closed.
    gui.Application.instance.run()


if __name__ == "__main__":
    main()

customized_visualization.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import open3d as o3d
import numpy as np
import matplotlib.pyplot as plt

pyexample_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
test_data_path = os.path.join(os.path.dirname(pyexample_path), 'test_data')


def custom_draw_geometry(pcd):
    # The following code achieves the same effect as:
    # o3d.visualization.draw_geometries([pcd])
    vis = o3d.visualization.Visualizer()
    vis.create_window()
    vis.add_geometry(pcd)
    vis.run()
    vis.destroy_window()


def custom_draw_geometry_with_custom_fov(pcd, fov_step):
    vis = o3d.visualization.Visualizer()
    vis.create_window()
    vis.add_geometry(pcd)
    ctr = vis.get_view_control()
    print("Field of view (before changing) %.2f" % ctr.get_field_of_view())
    ctr.change_field_of_view(step=fov_step)
    print("Field of view (after changing) %.2f" % ctr.get_field_of_view())
    vis.run()
    vis.destroy_window()


def custom_draw_geometry_with_rotation(pcd):

    def rotate_view(vis):
        ctr = vis.get_view_control()
        ctr.rotate(10.0, 0.0)
        return False

    o3d.visualization.draw_geometries_with_animation_callback([pcd],
                                                              rotate_view)


def custom_draw_geometry_load_option(pcd, render_option_path):
    vis = o3d.visualization.Visualizer()
    vis.create_window()
    vis.add_geometry(pcd)
    vis.get_render_option().load_from_json(render_option_path)
    vis.run()
    vis.destroy_window()


def custom_draw_geometry_with_key_callback(pcd, render_option_path):

    def change_background_to_black(vis):
        opt = vis.get_render_option()
        opt.background_color = np.asarray([0, 0, 0])
        return False

    def load_render_option(vis):
        vis.get_render_option().load_from_json(render_option_path)
        return False

    def capture_depth(vis):
        depth = vis.capture_depth_float_buffer()
        plt.imshow(np.asarray(depth))
        plt.show()
        return False

    def capture_image(vis):
        image = vis.capture_screen_float_buffer()
        plt.imshow(np.asarray(image))
        plt.show()
        return False

    key_to_callback = {}
    key_to_callback[ord("K")] = change_background_to_black
    key_to_callback[ord("R")] = load_render_option
    key_to_callback[ord(",")] = capture_depth
    key_to_callback[ord(".")] = capture_image
    o3d.visualization.draw_geometries_with_key_callbacks([pcd], key_to_callback)


def custom_draw_geometry_with_camera_trajectory(pcd, render_option_path,
                                                camera_trajectory_path):
    custom_draw_geometry_with_camera_trajectory.index = -1
    custom_draw_geometry_with_camera_trajectory.trajectory =\
        o3d.io.read_pinhole_camera_trajectory(camera_trajectory_path)
    custom_draw_geometry_with_camera_trajectory.vis = o3d.visualization.Visualizer(
    )
    image_path = os.path.join(test_data_path, 'image')
    if not os.path.exists(image_path):
        os.makedirs(image_path)
    depth_path = os.path.join(test_data_path, 'depth')
    if not os.path.exists(depth_path):
        os.makedirs(depth_path)

    def move_forward(vis):
        # This function is called within the o3d.visualization.Visualizer::run() loop
        # The run loop calls the function, then re-render
        # So the sequence in this function is to:
        # 1. Capture frame
        # 2. index++, check ending criteria
        # 3. Set camera
        # 4. (Re-render)
        ctr = vis.get_view_control()
        glb = custom_draw_geometry_with_camera_trajectory
        if glb.index >= 0:
            print("Capture image {:05d}".format(glb.index))
            depth = vis.capture_depth_float_buffer(False)
            image = vis.capture_screen_float_buffer(False)
            plt.imsave(os.path.join(depth_path, '{:05d}.png'.format(glb.index)),
                       np.asarray(depth),
                       dpi=1)
            plt.imsave(os.path.join(image_path, '{:05d}.png'.format(glb.index)),
                       np.asarray(image),
                       dpi=1)
            # vis.capture_depth_image("depth/{:05d}.png".format(glb.index), False)
            # vis.capture_screen_image("image/{:05d}.png".format(glb.index), False)
        glb.index = glb.index + 1
        if glb.index < len(glb.trajectory.parameters):
            ctr.convert_from_pinhole_camera_parameters(
                glb.trajectory.parameters[glb.index], allow_arbitrary=True)
        else:
            custom_draw_geometry_with_camera_trajectory.vis.\
                register_animation_callback(None)
        return False

    vis = custom_draw_geometry_with_camera_trajectory.vis
    vis.create_window()
    vis.add_geometry(pcd)
    vis.get_render_option().load_from_json(render_option_path)
    vis.register_animation_callback(move_forward)
    vis.run()
    vis.destroy_window()


if __name__ == "__main__":
    sample_data = o3d.data.DemoCustomVisualization()
    pcd_flipped = o3d.io.read_point_cloud(sample_data.point_cloud_path)
    # Flip it, otherwise the pointcloud will be upside down
    pcd_flipped.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0],
                           [0, 0, 0, 1]])

    print("1. Customized visualization to mimic DrawGeometry")
    custom_draw_geometry(pcd_flipped)

    print("2. Changing field of view")
    custom_draw_geometry_with_custom_fov(pcd_flipped, 90.0)
    custom_draw_geometry_with_custom_fov(pcd_flipped, -90.0)

    print("3. Customized visualization with a rotating view")
    custom_draw_geometry_with_rotation(pcd_flipped)

    print("4. Customized visualization showing normal rendering")
    custom_draw_geometry_load_option(pcd_flipped,
                                     sample_data.render_option_path)

    print("5. Customized visualization with key press callbacks")
    print("   Press 'K' to change background color to black")
    print("   Press 'R' to load a customized render option, showing normals")
    print("   Press ',' to capture the depth buffer and show it")
    print("   Press '.' to capture the screen and show it")
    custom_draw_geometry_with_key_callback(pcd_flipped,
                                           sample_data.render_option_path)

    pcd = o3d.io.read_point_cloud(sample_data.point_cloud_path)
    print("6. Customized visualization playing a camera trajectory")
    custom_draw_geometry_with_camera_trajectory(
        pcd, sample_data.render_option_path, sample_data.camera_trajectory_path)

customized_visualization_key_action.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import open3d as o3d


def custom_key_action_without_kb_repeat_delay(pcd):
    rotating = False

    vis = o3d.visualization.VisualizerWithKeyCallback()

    def key_action_callback(vis, action, mods):
        nonlocal rotating
        print(action)
        if action == 1:  # key down
            rotating = True
        elif action == 0:  # key up
            rotating = False
        elif action == 2:  # key repeat
            pass
        return True

    def animation_callback(vis):
        nonlocal rotating
        if rotating:
            ctr = vis.get_view_control()
            ctr.rotate(10.0, 0.0)

    # key_action_callback will be triggered when there's a keyboard press, release or repeat event
    vis.register_key_action_callback(32, key_action_callback)  # space

    # animation_callback is always repeatedly called by the visualizer
    vis.register_animation_callback(animation_callback)

    vis.create_window()
    vis.add_geometry(pcd)
    vis.run()


if __name__ == "__main__":
    ply_data = o3d.data.PLYPointCloud()
    pcd = o3d.io.read_point_cloud(ply_data.path)

    print(
        "Customized visualization with smooth key action (without keyboard repeat delay)"
    )
    custom_key_action_without_kb_repeat_delay(pcd)

demo_scene.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

import math
import numpy as np
import os
import open3d as o3d
import open3d.visualization as vis


def convert_material_record(mat_record):
    mat = vis.Material('defaultLit')
    # Convert scalar parameters
    mat.vector_properties['base_color'] = mat_record.base_color
    mat.scalar_properties['metallic'] = mat_record.base_metallic
    mat.scalar_properties['roughness'] = mat_record.base_roughness
    mat.scalar_properties['reflectance'] = mat_record.base_reflectance
    mat.texture_maps['albedo'] = o3d.t.geometry.Image.from_legacy(
        mat_record.albedo_img)
    mat.texture_maps['normal'] = o3d.t.geometry.Image.from_legacy(
        mat_record.normal_img)
    mat.texture_maps['ao_rough_metal'] = o3d.t.geometry.Image.from_legacy(
        mat_record.ao_rough_metal_img)
    return mat


def create_scene():
    '''
    Creates the geometry and materials for the demo scene and returns a dictionary suitable for draw call
    '''
    # Create some shapes for our scene
    a_cube = o3d.geometry.TriangleMesh.create_box(2,
                                                  4,
                                                  4,
                                                  create_uv_map=True,
                                                  map_texture_to_each_face=True)
    a_cube.compute_triangle_normals()
    a_cube.translate((-5, 0, -2))
    a_cube = o3d.t.geometry.TriangleMesh.from_legacy(a_cube)

    a_sphere = o3d.geometry.TriangleMesh.create_sphere(2.5,
                                                       resolution=40,
                                                       create_uv_map=True)
    a_sphere.compute_vertex_normals()
    rotate_90 = o3d.geometry.get_rotation_matrix_from_xyz((-math.pi / 2, 0, 0))
    a_sphere.rotate(rotate_90)
    a_sphere.translate((5, 2.4, 0))
    a_sphere = o3d.t.geometry.TriangleMesh.from_legacy(a_sphere)

    a_cylinder = o3d.geometry.TriangleMesh.create_cylinder(
        1.0, 4.0, 30, 4, True)
    a_cylinder.compute_triangle_normals()
    a_cylinder.rotate(rotate_90)
    a_cylinder.translate((10, 2, 0))
    a_cylinder = o3d.t.geometry.TriangleMesh.from_legacy(a_cylinder)

    a_ico = o3d.geometry.TriangleMesh.create_icosahedron(1.25,
                                                         create_uv_map=True)
    a_ico.compute_triangle_normals()
    a_ico.translate((-10, 2, 0))
    a_ico = o3d.t.geometry.TriangleMesh.from_legacy(a_ico)

    # Load an OBJ model for our scene
    helmet_data = o3d.data.FlightHelmetModel()
    helmet = o3d.io.read_triangle_model(helmet_data.path)
    helmet_parts = []
    for m in helmet.meshes:
        # m.mesh.paint_uniform_color((1.0, 0.75, 0.3))
        m.mesh.scale(10.0, (0.0, 0.0, 0.0))
        helmet_parts.append(m)

    # Create a ground plane
    ground_plane = o3d.geometry.TriangleMesh.create_box(
        50.0, 0.1, 50.0, create_uv_map=True, map_texture_to_each_face=True)
    ground_plane.compute_triangle_normals()
    rotate_180 = o3d.geometry.get_rotation_matrix_from_xyz((-math.pi, 0, 0))
    ground_plane.rotate(rotate_180)
    ground_plane.translate((-25.0, -0.1, -25.0))
    ground_plane.paint_uniform_color((1, 1, 1))
    ground_plane = o3d.t.geometry.TriangleMesh.from_legacy(ground_plane)

    # Material to make ground plane more interesting - a rough piece of glass
    ground_plane.material = vis.Material("defaultLitSSR")
    ground_plane.material.scalar_properties['roughness'] = 0.15
    ground_plane.material.scalar_properties['reflectance'] = 0.72
    ground_plane.material.scalar_properties['transmission'] = 0.6
    ground_plane.material.scalar_properties['thickness'] = 0.3
    ground_plane.material.scalar_properties['absorption_distance'] = 0.1
    ground_plane.material.vector_properties['absorption_color'] = np.array(
        [0.82, 0.98, 0.972, 1.0])
    painted_plaster_texture_data = o3d.data.PaintedPlasterTexture()
    ground_plane.material.texture_maps['albedo'] = o3d.t.io.read_image(
        painted_plaster_texture_data.albedo_texture_path)
    ground_plane.material.texture_maps['normal'] = o3d.t.io.read_image(
        painted_plaster_texture_data.normal_texture_path)
    ground_plane.material.texture_maps['roughness'] = o3d.t.io.read_image(
        painted_plaster_texture_data.roughness_texture_path)

    # Load textures and create materials for each of our demo items
    wood_floor_texture_data = o3d.data.WoodFloorTexture()
    a_cube.material = vis.Material('defaultLit')
    a_cube.material.texture_maps['albedo'] = o3d.t.io.read_image(
        wood_floor_texture_data.albedo_texture_path)
    a_cube.material.texture_maps['normal'] = o3d.t.io.read_image(
        wood_floor_texture_data.normal_texture_path)
    a_cube.material.texture_maps['roughness'] = o3d.t.io.read_image(
        wood_floor_texture_data.roughness_texture_path)

    tiles_texture_data = o3d.data.TilesTexture()
    a_sphere.material = vis.Material('defaultLit')
    a_sphere.material.texture_maps['albedo'] = o3d.t.io.read_image(
        tiles_texture_data.albedo_texture_path)
    a_sphere.material.texture_maps['normal'] = o3d.t.io.read_image(
        tiles_texture_data.normal_texture_path)
    a_sphere.material.texture_maps['roughness'] = o3d.t.io.read_image(
        tiles_texture_data.roughness_texture_path)

    terrazzo_texture_data = o3d.data.TerrazzoTexture()
    a_ico.material = vis.Material('defaultLit')
    a_ico.material.texture_maps['albedo'] = o3d.t.io.read_image(
        terrazzo_texture_data.albedo_texture_path)
    a_ico.material.texture_maps['normal'] = o3d.t.io.read_image(
        terrazzo_texture_data.normal_texture_path)
    a_ico.material.texture_maps['roughness'] = o3d.t.io.read_image(
        terrazzo_texture_data.roughness_texture_path)

    metal_texture_data = o3d.data.MetalTexture()
    a_cylinder.material = vis.Material('defaultLit')
    a_cylinder.material.texture_maps['albedo'] = o3d.t.io.read_image(
        metal_texture_data.albedo_texture_path)
    a_cylinder.material.texture_maps['normal'] = o3d.t.io.read_image(
        metal_texture_data.normal_texture_path)
    a_cylinder.material.texture_maps['roughness'] = o3d.t.io.read_image(
        metal_texture_data.roughness_texture_path)
    a_cylinder.material.texture_maps['metallic'] = o3d.t.io.read_image(
        metal_texture_data.metallic_texture_path)

    geoms = [{
        "name": "plane",
        "geometry": ground_plane
    }, {
        "name": "cube",
        "geometry": a_cube
    }, {
        "name": "cylinder",
        "geometry": a_cylinder
    }, {
        "name": "ico",
        "geometry": a_ico
    }, {
        "name": "sphere",
        "geometry": a_sphere
    }]
    # Load the helmet
    for part in helmet_parts:
        name = part.mesh_name
        tgeom = o3d.t.geometry.TriangleMesh.from_legacy(part.mesh)
        tgeom.material = convert_material_record(
            helmet.materials[part.material_idx])
        geoms.append({"name": name, "geometry": tgeom})
    return geoms


if __name__ == "__main__":
    geoms = create_scene()
    vis.draw(geoms,
             bg_color=(0.8, 0.9, 0.9, 1.0),
             show_ui=True,
             width=1920,
             height=1080)

draw.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import math
import numpy as np
import open3d as o3d
import open3d.visualization as vis
import os
import random

pyexample_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
test_data_path = os.path.join(os.path.dirname(pyexample_path), 'test_data')


def normalize(v):
    a = 1.0 / math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2])
    return (a * v[0], a * v[1], a * v[2])


def make_point_cloud(npts, center, radius, colorize):
    pts = np.random.uniform(-radius, radius, size=[npts, 3]) + center
    cloud = o3d.geometry.PointCloud()
    cloud.points = o3d.utility.Vector3dVector(pts)
    if colorize:
        colors = np.random.uniform(0.0, 1.0, size=[npts, 3])
        cloud.colors = o3d.utility.Vector3dVector(colors)
    return cloud


def single_object():
    # No colors, no normals, should appear unlit black
    cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4)
    vis.draw(cube)


def multi_objects():
    pc_rad = 1.0
    pc_nocolor = make_point_cloud(100, (0, -2, 0), pc_rad, False)
    pc_color = make_point_cloud(100, (3, -2, 0), pc_rad, True)
    r = 0.4
    sphere_unlit = o3d.geometry.TriangleMesh.create_sphere(r)
    sphere_unlit.translate((0, 1, 0))
    sphere_colored_unlit = o3d.geometry.TriangleMesh.create_sphere(r)
    sphere_colored_unlit.paint_uniform_color((1.0, 0.0, 0.0))
    sphere_colored_unlit.translate((2, 1, 0))
    sphere_lit = o3d.geometry.TriangleMesh.create_sphere(r)
    sphere_lit.compute_vertex_normals()
    sphere_lit.translate((4, 1, 0))
    sphere_colored_lit = o3d.geometry.TriangleMesh.create_sphere(r)
    sphere_colored_lit.compute_vertex_normals()
    sphere_colored_lit.paint_uniform_color((0.0, 1.0, 0.0))
    sphere_colored_lit.translate((6, 1, 0))
    big_bbox = o3d.geometry.AxisAlignedBoundingBox((-pc_rad, -3, -pc_rad),
                                                   (6.0 + r, 1.0 + r, pc_rad))
    big_bbox.color = (0.0, 0.0, 0.0)
    sphere_bbox = sphere_unlit.get_axis_aligned_bounding_box()
    sphere_bbox.color = (1.0, 0.5, 0.0)
    lines = o3d.geometry.LineSet.create_from_axis_aligned_bounding_box(
        sphere_lit.get_axis_aligned_bounding_box())
    lines.paint_uniform_color((0.0, 1.0, 0.0))
    lines_colored = o3d.geometry.LineSet.create_from_axis_aligned_bounding_box(
        sphere_colored_lit.get_axis_aligned_bounding_box())
    lines_colored.paint_uniform_color((0.0, 0.0, 1.0))

    vis.draw([
        pc_nocolor, pc_color, sphere_unlit, sphere_colored_unlit, sphere_lit,
        sphere_colored_lit, big_bbox, sphere_bbox, lines, lines_colored
    ])


def actions():
    SOURCE_NAME = "Source"
    RESULT_NAME = "Result (Poisson reconstruction)"
    TRUTH_NAME = "Ground truth"

    bunny = o3d.data.BunnyMesh()
    bunny_mesh = o3d.io.read_triangle_mesh(bunny.path)
    bunny_mesh.compute_vertex_normals()

    bunny_mesh.paint_uniform_color((1, 0.75, 0))
    bunny_mesh.compute_vertex_normals()
    cloud = o3d.geometry.PointCloud()
    cloud.points = bunny_mesh.vertices
    cloud.normals = bunny_mesh.vertex_normals

    def make_mesh(o3dvis):
        # TODO: call o3dvis.get_geometry instead of using bunny_mesh
        mesh, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            cloud)
        mesh.paint_uniform_color((1, 1, 1))
        mesh.compute_vertex_normals()
        o3dvis.add_geometry({"name": RESULT_NAME, "geometry": mesh})
        o3dvis.show_geometry(SOURCE_NAME, False)

    def toggle_result(o3dvis):
        truth_vis = o3dvis.get_geometry(TRUTH_NAME).is_visible
        o3dvis.show_geometry(TRUTH_NAME, not truth_vis)
        o3dvis.show_geometry(RESULT_NAME, truth_vis)

    vis.draw([{
        "name": SOURCE_NAME,
        "geometry": cloud
    }, {
        "name": TRUTH_NAME,
        "geometry": bunny_mesh,
        "is_visible": False
    }],
             actions=[("Create Mesh", make_mesh),
                      ("Toggle truth/result", toggle_result)])


def get_icp_transform(source, target, source_indices, target_indices):
    corr = np.zeros((len(source_indices), 2))
    corr[:, 0] = source_indices
    corr[:, 1] = target_indices

    # Estimate rough transformation using correspondences
    p2p = o3d.pipelines.registration.TransformationEstimationPointToPoint()
    trans_init = p2p.compute_transformation(source, target,
                                            o3d.utility.Vector2iVector(corr))

    # Point-to-point ICP for refinement
    threshold = 0.03  # 3cm distance threshold
    reg_p2p = o3d.pipelines.registration.registration_icp(
        source, target, threshold, trans_init,
        o3d.pipelines.registration.TransformationEstimationPointToPoint())

    return reg_p2p.transformation


def selections():
    pcd_fragments_data = o3d.data.DemoICPPointClouds()
    source = o3d.io.read_point_cloud(pcd_fragments_data.paths[0])
    target = o3d.io.read_point_cloud(pcd_fragments_data.paths[1])
    source.paint_uniform_color([1, 0.706, 0])
    target.paint_uniform_color([0, 0.651, 0.929])

    source_name = "Source (yellow)"
    target_name = "Target (blue)"

    def do_icp_one_set(o3dvis):
        # sets: [name: [{ "index": int, "order": int, "point": (x, y, z)}, ...],
        #        ...]
        sets = o3dvis.get_selection_sets()
        source_picked = sorted(list(sets[0][source_name]),
                               key=lambda x: x.order)
        target_picked = sorted(list(sets[0][target_name]),
                               key=lambda x: x.order)
        source_indices = [idx.index for idx in source_picked]
        target_indices = [idx.index for idx in target_picked]

        t = get_icp_transform(source, target, source_indices, target_indices)
        source.transform(t)

        # Update the source geometry
        o3dvis.remove_geometry(source_name)
        o3dvis.add_geometry({"name": source_name, "geometry": source})

    def do_icp_two_sets(o3dvis):
        sets = o3dvis.get_selection_sets()
        source_set = sets[0][source_name]
        target_set = sets[1][target_name]
        source_picked = sorted(list(source_set), key=lambda x: x.order)
        target_picked = sorted(list(target_set), key=lambda x: x.order)
        source_indices = [idx.index for idx in source_picked]
        target_indices = [idx.index for idx in target_picked]

        t = get_icp_transform(source, target, source_indices, target_indices)
        source.transform(t)

        # Update the source geometry
        o3dvis.remove_geometry(source_name)
        o3dvis.add_geometry({"name": source_name, "geometry": source})

    vis.draw([{
        "name": source_name,
        "geometry": source
    }, {
        "name": target_name,
        "geometry": target
    }],
             actions=[("ICP Registration (one set)", do_icp_one_set),
                      ("ICP Registration (two sets)", do_icp_two_sets)],
             show_ui=True)


def time_animation():
    orig = make_point_cloud(200, (0, 0, 0), 1.0, True)
    clouds = [{"name": "t=0", "geometry": orig, "time": 0}]
    drift_dir = (1.0, 0.0, 0.0)
    expand = 1.0
    n = 20
    for i in range(1, n):
        amount = float(i) / float(n - 1)
        cloud = o3d.geometry.PointCloud()
        pts = np.asarray(orig.points)
        pts = pts * (1.0 + amount * expand) + [amount * v for v in drift_dir]
        cloud.points = o3d.utility.Vector3dVector(pts)
        cloud.colors = orig.colors
        clouds.append({
            "name": "points at t=" + str(i),
            "geometry": cloud,
            "time": i
        })

    vis.draw(clouds)


def groups():
    building_mat = vis.rendering.MaterialRecord()
    building_mat.shader = "defaultLit"
    building_mat.base_color = (1.0, .90, .75, 1.0)
    building_mat.base_reflectance = 0.1
    midrise_mat = vis.rendering.MaterialRecord()
    midrise_mat.shader = "defaultLit"
    midrise_mat.base_color = (.475, .450, .425, 1.0)
    midrise_mat.base_reflectance = 0.1
    skyscraper_mat = vis.rendering.MaterialRecord()
    skyscraper_mat.shader = "defaultLit"
    skyscraper_mat.base_color = (.05, .20, .55, 1.0)
    skyscraper_mat.base_reflectance = 0.9
    skyscraper_mat.base_roughness = 0.01

    buildings = []
    size = 10.0
    half = size / 2.0
    min_height = 1.0
    max_height = 20.0
    for z in range(0, 10):
        for x in range(0, 10):
            max_h = max_height * (1.0 - abs(half - x) / half) * (
                1.0 - abs(half - z) / half)
            h = random.uniform(min_height, max(max_h, min_height + 1.0))
            box = o3d.geometry.TriangleMesh.create_box(0.9, h, 0.9)
            box.compute_triangle_normals()
            box.translate((x + 0.05, 0.0, z + 0.05))
            if h > 0.333 * max_height:
                mat = skyscraper_mat
            elif h > 0.1 * max_height:
                mat = midrise_mat
            else:
                mat = building_mat
            buildings.append({
                "name": "building_" + str(x) + "_" + str(z),
                "geometry": box,
                "material": mat,
                "group": "buildings"
            })

    haze = make_point_cloud(5000, (half, 0.333 * max_height, half),
                            1.414 * half, False)
    haze.paint_uniform_color((0.8, 0.8, 0.8))

    smog = make_point_cloud(10000, (half, 0.25 * max_height, half), 1.2 * half,
                            False)
    smog.paint_uniform_color((0.95, 0.85, 0.75))

    vis.draw(buildings + [{
        "name": "haze",
        "geometry": haze,
        "group": "haze"
    }, {
        "name": "smog",
        "geometry": smog,
        "group": "smog"
    }])


def remove():

    def make_sphere(name, center, color, group, time):
        sphere = o3d.geometry.TriangleMesh.create_sphere(0.5)
        sphere.compute_vertex_normals()
        sphere.translate(center)

        mat = vis.rendering.Material()
        mat.shader = "defaultLit"
        mat.base_color = color

        return {
            "name": name,
            "geometry": sphere,
            "material": mat,
            "group": group,
            "time": time
        }

    red = make_sphere("red", (0, 0, 0), (1.0, 0.0, 0.0, 1.0), "spheres", 0)
    green = make_sphere("green", (2, 0, 0), (0.0, 1.0, 0.0, 1.0), "spheres", 0)
    blue = make_sphere("blue", (4, 0, 0), (0.0, 0.0, 1.0, 1.0), "spheres", 0)
    yellow = make_sphere("yellow", (0, 0, 0), (1.0, 1.0, 0.0, 1.0), "spheres",
                         1)
    bbox = {
        "name": "bbox",
        "geometry": red["geometry"].get_axis_aligned_bounding_box()
    }

    def remove_green(visdraw):
        visdraw.remove_geometry("green")

    def remove_yellow(visdraw):
        visdraw.remove_geometry("yellow")

    def remove_bbox(visdraw):
        visdraw.remove_geometry("bbox")

    vis.draw([red, green, blue, yellow, bbox],
             actions=[("Remove Green", remove_green),
                      ("Remove Yellow", remove_yellow),
                      ("Remove Bounds", remove_bbox)])


def main():
    single_object()
    multi_objects()
    actions()
    selections()


if __name__ == "__main__":
    main()

draw_webrtc.py

27
28
29
30
31
32
33
34
import open3d as o3d

if __name__ == "__main__":
    o3d.visualization.webrtc_server.enable_webrtc()
    cube_red = o3d.geometry.TriangleMesh.create_box(1, 2, 4)
    cube_red.compute_vertex_normals()
    cube_red.paint_uniform_color((1.0, 0.0, 0.0))
    o3d.visualization.draw(cube_red)

headless_rendering.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import open3d as o3d
import numpy as np
import matplotlib.pyplot as plt


def custom_draw_geometry_with_camera_trajectory(pcd, camera_trajectory_path,
                                                render_option_path,
                                                output_path):
    custom_draw_geometry_with_camera_trajectory.index = -1
    custom_draw_geometry_with_camera_trajectory.trajectory =\
        o3d.io.read_pinhole_camera_trajectory(camera_trajectory_path)
    custom_draw_geometry_with_camera_trajectory.vis = o3d.visualization.Visualizer(
    )
    image_path = os.path.join(output_path, 'image')
    if not os.path.exists(image_path):
        os.makedirs(image_path)
    depth_path = os.path.join(output_path, 'depth')
    if not os.path.exists(depth_path):
        os.makedirs(depth_path)

    print("Saving color images in " + image_path)
    print("Saving depth images in " + depth_path)

    def move_forward(vis):
        # This function is called within the o3d.visualization.Visualizer::run() loop
        # The run loop calls the function, then re-render
        # So the sequence in this function is to:
        # 1. Capture frame
        # 2. index++, check ending criteria
        # 3. Set camera
        # 4. (Re-render)
        ctr = vis.get_view_control()
        glb = custom_draw_geometry_with_camera_trajectory
        if glb.index >= 0:
            print("Capture image {:05d}".format(glb.index))
            # Capture and save image using Open3D.
            vis.capture_depth_image(
                os.path.join(depth_path, "{:05d}.png".format(glb.index)), False)
            vis.capture_screen_image(
                os.path.join(image_path, "{:05d}.png".format(glb.index)), False)

            # Example to save image using matplotlib.
            '''
            depth = vis.capture_depth_float_buffer()
            image = vis.capture_screen_float_buffer()
            plt.imsave(os.path.join(depth_path, "{:05d}.png".format(glb.index)),
                       np.asarray(depth),
                       dpi=1)
            plt.imsave(os.path.join(image_path, "{:05d}.png".format(glb.index)),
                       np.asarray(image),
                       dpi=1)
            '''

        glb.index = glb.index + 1
        if glb.index < len(glb.trajectory.parameters):
            ctr.convert_from_pinhole_camera_parameters(
                glb.trajectory.parameters[glb.index])
        else:
            custom_draw_geometry_with_camera_trajectory.vis.destroy_window()

        # Return false as we don't need to call UpdateGeometry()
        return False

    vis = custom_draw_geometry_with_camera_trajectory.vis
    vis.create_window()
    vis.add_geometry(pcd)
    vis.get_render_option().load_from_json(render_option_path)
    vis.register_animation_callback(move_forward)
    vis.run()


if __name__ == "__main__":
    if not o3d._build_config['ENABLE_HEADLESS_RENDERING']:
        print("Headless rendering is not enabled. "
              "Please rebuild Open3D with ENABLE_HEADLESS_RENDERING=ON")
        exit(1)

    sample_data = o3d.data.DemoCustomVisualization()
    pcd = o3d.io.read_point_cloud(sample_data.point_cloud_path)
    print("Customized visualization playing a camera trajectory. "
          "Press ctrl+z to terminate.")
    custom_draw_geometry_with_camera_trajectory(
        pcd, sample_data.camera_trajectory_path, sample_data.render_option_path,
        'HeadlessRenderingOutput')

interactive_visualization.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
# examples/python/visualization/interactive_visualization.py

import numpy as np
import copy
import open3d as o3d


def demo_crop_geometry():
    print("Demo for manual geometry cropping")
    print(
        "1) Press 'Y' twice to align geometry with negative direction of y-axis"
    )
    print("2) Press 'K' to lock screen and to switch to selection mode")
    print("3) Drag for rectangle selection,")
    print("   or use ctrl + left click for polygon selection")
    print("4) Press 'C' to get a selected geometry")
    print("5) Press 'S' to save the selected geometry")
    print("6) Press 'F' to switch to freeview mode")
    pcd_data = o3d.data.DemoICPPointClouds()
    pcd = o3d.io.read_point_cloud(pcd_data.paths[0])
    o3d.visualization.draw_geometries_with_editing([pcd])


def draw_registration_result(source, target, transformation):
    source_temp = copy.deepcopy(source)
    target_temp = copy.deepcopy(target)
    source_temp.paint_uniform_color([1, 0.706, 0])
    target_temp.paint_uniform_color([0, 0.651, 0.929])
    source_temp.transform(transformation)
    o3d.visualization.draw_geometries([source_temp, target_temp])


def pick_points(pcd):
    print("")
    print(
        "1) Please pick at least three correspondences using [shift + left click]"
    )
    print("   Press [shift + right click] to undo point picking")
    print("2) After picking points, press 'Q' to close the window")
    vis = o3d.visualization.VisualizerWithEditing()
    vis.create_window()
    vis.add_geometry(pcd)
    vis.run()  # user picks points
    vis.destroy_window()
    print("")
    return vis.get_picked_points()


def demo_manual_registration():
    print("Demo for manual ICP")
    pcd_data = o3d.data.DemoICPPointClouds()
    source = o3d.io.read_point_cloud(pcd_data.paths[0])
    target = o3d.io.read_point_cloud(pcd_data.paths[2])
    print("Visualization of two point clouds before manual alignment")
    draw_registration_result(source, target, np.identity(4))

    # pick points from two point clouds and builds correspondences
    picked_id_source = pick_points(source)
    picked_id_target = pick_points(target)
    assert (len(picked_id_source) >= 3 and len(picked_id_target) >= 3)
    assert (len(picked_id_source) == len(picked_id_target))
    corr = np.zeros((len(picked_id_source), 2))
    corr[:, 0] = picked_id_source
    corr[:, 1] = picked_id_target

    # estimate rough transformation using correspondences
    print("Compute a rough transform using the correspondences given by user")
    p2p = o3d.pipelines.registration.TransformationEstimationPointToPoint()
    trans_init = p2p.compute_transformation(source, target,
                                            o3d.utility.Vector2iVector(corr))

    # point-to-point ICP for refinement
    print("Perform point-to-point ICP refinement")
    threshold = 0.03  # 3cm distance threshold
    reg_p2p = o3d.pipelines.registration.registration_icp(
        source, target, threshold, trans_init,
        o3d.pipelines.registration.TransformationEstimationPointToPoint())
    draw_registration_result(source, target, reg_p2p.transformation)
    print("")


if __name__ == "__main__":
    demo_crop_geometry()
    demo_manual_registration()

line_width.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import open3d as o3d
import random

NUM_LINES = 10


def random_point():
    return [5 * random.random(), 5 * random.random(), 5 * random.random()]


def main():
    pts = [random_point() for _ in range(0, 2 * NUM_LINES)]
    line_indices = [[2 * i, 2 * i + 1] for i in range(0, NUM_LINES)]
    colors = [[0.0, 0.0, 0.0] for _ in range(0, NUM_LINES)]

    lines = o3d.geometry.LineSet()
    lines.points = o3d.utility.Vector3dVector(pts)
    lines.lines = o3d.utility.Vector2iVector(line_indices)
    # The default color of the lines is white, which will be invisible on the
    # default white background. So we either need to set the color of the lines
    # or the base_color of the material.
    lines.colors = o3d.utility.Vector3dVector(colors)

    # Some platforms do not require OpenGL implementations to support wide lines,
    # so the renderer requires a custom shader to implement this: "unlitLine".
    # The line_width field is only used by this shader; all other shaders ignore
    # it.
    mat = o3d.visualization.rendering.MaterialRecord()
    mat.shader = "unlitLine"
    mat.line_width = 10  # note that this is scaled with respect to pixels,
    # so will give different results depending on the
    # scaling values of your system
    o3d.visualization.draw({
        "name": "lines",
        "geometry": lines,
        "material": mat
    })


if __name__ == "__main__":
    main()

load_save_viewpoint.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import open3d as o3d


def save_view_point(pcd, filename):
    vis = o3d.visualization.Visualizer()
    vis.create_window()
    vis.add_geometry(pcd)
    vis.run()  # user changes the view and press "q" to terminate
    param = vis.get_view_control().convert_to_pinhole_camera_parameters()
    o3d.io.write_pinhole_camera_parameters(filename, param)
    vis.destroy_window()


def load_view_point(pcd, filename):
    vis = o3d.visualization.Visualizer()
    vis.create_window()
    ctr = vis.get_view_control()
    param = o3d.io.read_pinhole_camera_parameters(filename)
    vis.add_geometry(pcd)
    ctr.convert_from_pinhole_camera_parameters(param)
    vis.run()
    vis.destroy_window()


if __name__ == "__main__":
    pcd_data = o3d.data.PCDPointCloud()
    pcd = o3d.io.read_point_cloud(pcd_data.path)
    save_view_point(pcd, "viewpoint.json")
    load_view_point(pcd, "viewpoint.json")

mouse_and_point_coord.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import open3d as o3d
import open3d.visualization.gui as gui
import open3d.visualization.rendering as rendering


# This example displays a point cloud and if you Ctrl-click on a point
# (Cmd-click on macOS) it will show the coordinates of the point.
# This example illustrates:
# - custom mouse handling on SceneWidget
# - getting a the depth value of a point (OpenGL depth)
# - converting from a window point + OpenGL depth to world coordinate
class ExampleApp:

    def __init__(self, cloud):
        # We will create a SceneWidget that fills the entire window, and then
        # a label in the lower left on top of the SceneWidget to display the
        # coordinate.
        app = gui.Application.instance
        self.window = app.create_window("Open3D - GetCoord Example", 1024, 768)
        # Since we want the label on top of the scene, we cannot use a layout,
        # so we need to manually layout the window's children.
        self.window.set_on_layout(self._on_layout)
        self.widget3d = gui.SceneWidget()
        self.window.add_child(self.widget3d)
        self.info = gui.Label("")
        self.info.visible = False
        self.window.add_child(self.info)

        self.widget3d.scene = rendering.Open3DScene(self.window.renderer)

        mat = rendering.MaterialRecord()
        mat.shader = "defaultUnlit"
        # Point size is in native pixels, but "pixel" means different things to
        # different platforms (macOS, in particular), so multiply by Window scale
        # factor.
        mat.point_size = 3 * self.window.scaling
        self.widget3d.scene.add_geometry("Point Cloud", cloud, mat)

        bounds = self.widget3d.scene.bounding_box
        center = bounds.get_center()
        self.widget3d.setup_camera(60, bounds, center)
        self.widget3d.look_at(center, center - [0, 0, 3], [0, -1, 0])

        self.widget3d.set_on_mouse(self._on_mouse_widget3d)

    def _on_layout(self, layout_context):
        r = self.window.content_rect
        self.widget3d.frame = r
        pref = self.info.calc_preferred_size(layout_context,
                                             gui.Widget.Constraints())
        self.info.frame = gui.Rect(r.x,
                                   r.get_bottom() - pref.height, pref.width,
                                   pref.height)

    def _on_mouse_widget3d(self, event):
        # We could override BUTTON_DOWN without a modifier, but that would
        # interfere with manipulating the scene.
        if event.type == gui.MouseEvent.Type.BUTTON_DOWN and event.is_modifier_down(
                gui.KeyModifier.CTRL):

            def depth_callback(depth_image):
                # Coordinates are expressed in absolute coordinates of the
                # window, but to dereference the image correctly we need them
                # relative to the origin of the widget. Note that even if the
                # scene widget is the only thing in the window, if a menubar
                # exists it also takes up space in the window (except on macOS).
                x = event.x - self.widget3d.frame.x
                y = event.y - self.widget3d.frame.y
                # Note that np.asarray() reverses the axes.
                depth = np.asarray(depth_image)[y, x]

                if depth == 1.0:  # clicked on nothing (i.e. the far plane)
                    text = ""
                else:
                    world = self.widget3d.scene.camera.unproject(
                        event.x, event.y, depth, self.widget3d.frame.width,
                        self.widget3d.frame.height)
                    text = "({:.3f}, {:.3f}, {:.3f})".format(
                        world[0], world[1], world[2])

                # This is not called on the main thread, so we need to
                # post to the main thread to safely access UI items.
                def update_label():
                    self.info.text = text
                    self.info.visible = (text != "")
                    # We are sizing the info label to be exactly the right size,
                    # so since the text likely changed width, we need to
                    # re-layout to set the new frame.
                    self.window.set_needs_layout()

                gui.Application.instance.post_to_main_thread(
                    self.window, update_label)

            self.widget3d.scene.scene.render_to_depth_image(depth_callback)
            return gui.Widget.EventCallbackResult.HANDLED
        return gui.Widget.EventCallbackResult.IGNORED


def main():
    app = gui.Application.instance
    app.initialize()

    # This example will also work with a triangle mesh, or any 3D object.
    # If you use a triangle mesh you will probably want to set the material
    # shader to "defaultLit" instead of "defaultUnlit".
    pcd_data = o3d.data.DemoICPPointClouds()
    cloud = o3d.io.read_point_cloud(pcd_data.paths[0])
    ex = ExampleApp(cloud)

    app.run()


if __name__ == "__main__":
    main()

multiple_windows.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import open3d as o3d
import threading
import time

CLOUD_NAME = "points"


def main():
    MultiWinApp().run()


class MultiWinApp:

    def __init__(self):
        self.is_done = False
        self.n_snapshots = 0
        self.cloud = None
        self.main_vis = None
        self.snapshot_pos = None

    def run(self):
        app = o3d.visualization.gui.Application.instance
        app.initialize()

        self.main_vis = o3d.visualization.O3DVisualizer(
            "Open3D - Multi-Window Demo")
        self.main_vis.add_action("Take snapshot in new window",
                                 self.on_snapshot)
        self.main_vis.set_on_close(self.on_main_window_closing)

        app.add_window(self.main_vis)
        self.snapshot_pos = (self.main_vis.os_frame.x, self.main_vis.os_frame.y)

        threading.Thread(target=self.update_thread).start()

        app.run()

    def on_snapshot(self, vis):
        self.n_snapshots += 1
        self.snapshot_pos = (self.snapshot_pos[0] + 50,
                             self.snapshot_pos[1] + 50)
        title = "Open3D - Multi-Window Demo (Snapshot #" + str(
            self.n_snapshots) + ")"
        new_vis = o3d.visualization.O3DVisualizer(title)
        mat = o3d.visualization.rendering.MaterialRecord()
        mat.shader = "defaultUnlit"
        new_vis.add_geometry(CLOUD_NAME + " #" + str(self.n_snapshots),
                             self.cloud, mat)
        new_vis.reset_camera_to_default()
        bounds = self.cloud.get_axis_aligned_bounding_box()
        extent = bounds.get_extent()
        new_vis.setup_camera(60, bounds.get_center(),
                             bounds.get_center() + [0, 0, -3], [0, -1, 0])
        o3d.visualization.gui.Application.instance.add_window(new_vis)
        new_vis.os_frame = o3d.visualization.gui.Rect(self.snapshot_pos[0],
                                                      self.snapshot_pos[1],
                                                      new_vis.os_frame.width,
                                                      new_vis.os_frame.height)

    def on_main_window_closing(self):
        self.is_done = True
        return True  # False would cancel the close

    def update_thread(self):
        # This is NOT the UI thread, need to call post_to_main_thread() to update
        # the scene or any part of the UI.
        pcd_data = o3d.data.DemoICPPointClouds()
        self.cloud = o3d.io.read_point_cloud(pcd_data.paths[0])
        bounds = self.cloud.get_axis_aligned_bounding_box()
        extent = bounds.get_extent()

        def add_first_cloud():
            mat = o3d.visualization.rendering.MaterialRecord()
            mat.shader = "defaultUnlit"
            self.main_vis.add_geometry(CLOUD_NAME, self.cloud, mat)
            self.main_vis.reset_camera_to_default()
            self.main_vis.setup_camera(60, bounds.get_center(),
                                       bounds.get_center() + [0, 0, -3],
                                       [0, -1, 0])

        o3d.visualization.gui.Application.instance.post_to_main_thread(
            self.main_vis, add_first_cloud)

        while not self.is_done:
            time.sleep(0.1)

            # Perturb the cloud with a random walk to simulate an actual read
            pts = np.asarray(self.cloud.points)
            magnitude = 0.005 * extent
            displacement = magnitude * (np.random.random_sample(pts.shape) -
                                        0.5)
            new_pts = pts + displacement
            self.cloud.points = o3d.utility.Vector3dVector(new_pts)

            def update_cloud():
                # Note: if the number of points is less than or equal to the
                #       number of points in the original object that was added,
                #       using self.scene.update_geometry() will be faster.
                #       Requires that the point cloud be a t.PointCloud.
                self.main_vis.remove_geometry(CLOUD_NAME)
                mat = o3d.visualization.rendering.MaterialRecord()
                mat.shader = "defaultUnlit"
                self.main_vis.add_geometry(CLOUD_NAME, self.cloud, mat)

            if self.is_done:  # might have changed while sleeping
                break
            o3d.visualization.gui.Application.instance.post_to_main_thread(
                self.main_vis, update_cloud)


if __name__ == "__main__":
    main()

non_blocking_visualization.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# examples/python/visualization/non_blocking_visualization.py

import open3d as o3d
import numpy as np

if __name__ == "__main__":
    o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
    pcd_data = o3d.data.DemoICPPointClouds()
    source_raw = o3d.io.read_point_cloud(pcd_data.paths[0])
    target_raw = o3d.io.read_point_cloud(pcd_data.paths[1])

    source = source_raw.voxel_down_sample(voxel_size=0.02)
    target = target_raw.voxel_down_sample(voxel_size=0.02)
    trans = [[0.862, 0.011, -0.507, 0.0], [-0.139, 0.967, -0.215, 0.7],
             [0.487, 0.255, 0.835, -1.4], [0.0, 0.0, 0.0, 1.0]]
    source.transform(trans)

    flip_transform = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
    source.transform(flip_transform)
    target.transform(flip_transform)

    vis = o3d.visualization.Visualizer()
    vis.create_window()
    vis.add_geometry(source)
    vis.add_geometry(target)
    threshold = 0.05
    icp_iteration = 100
    save_image = False

    for i in range(icp_iteration):
        reg_p2l = o3d.pipelines.registration.registration_icp(
            source, target, threshold, np.identity(4),
            o3d.pipelines.registration.TransformationEstimationPointToPlane(),
            o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=1))
        source.transform(reg_p2l.transformation)
        vis.update_geometry(source)
        vis.poll_events()
        vis.update_renderer()
        if save_image:
            vis.capture_screen_image("temp_%04d.jpg" % i)
    vis.destroy_window()
    o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Info)

non_english.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import open3d.visualization.gui as gui
import os.path
import platform

basedir = os.path.dirname(os.path.realpath(__file__))

# This is all-widgets.py with some modifications for non-English languages.
# Please see all-widgets.py for usage of the GUI widgets

MODE_SERIF = "serif"
MODE_COMMON_HANYU = "common"
MODE_SERIF_AND_COMMON_HANYU = "serif+common"
MODE_COMMON_HANYU_EN = "hanyu_en+common"
MODE_ALL_HANYU = "all"
MODE_CUSTOM_CHARS = "custom"

#mode = MODE_SERIF
#mode = MODE_COMMON_HANYU
mode = MODE_SERIF_AND_COMMON_HANYU
#mode = MODE_ALL_HANYU
#mode = MODE_CUSTOM_CHARS

# Fonts can be names or paths
if platform.system() == "Darwin":
    serif = "Times New Roman"
    hanzi = "STHeiti Light"
    chess = "/System/Library/Fonts/Apple Symbols.ttf"
elif platform.system() == "Windows":
    # it is necessary to specify paths on Windows since it stores its fonts
    # with a cryptic name, so font name searches do not work on Windows
    serif = "c:/windows/fonts/times.ttf"  # Times New Roman
    hanzi = "c:/windows/fonts/msyh.ttc"  # YaHei UI
    chess = "c:/windows/fonts/seguisym.ttf"  # Segoe UI Symbol
else:
    # Assumes Ubuntu 18.04
    serif = "DejaVuSerif"
    hanzi = "NotoSansCJK"
    chess = "/usr/share/fonts/truetype/freefont/FreeSerif.ttf"


def main():
    gui.Application.instance.initialize()

    # Font changes must be done after initialization but before creating
    # a window.

    # MODE_SERIF changes the English font; Chinese will not be displayed
    font = None
    if mode == MODE_SERIF:
        font = gui.FontDescription(serif)
    # MODE_COMMON_HANYU uses the default English font and adds common Chinese
    elif mode == MODE_COMMON_HANYU:
        font = gui.FontDescription()
        font.add_typeface_for_language(hanzi, "zh")
    # MODE_SERIF_AND_COMMON_HANYU uses a serif English font and adds common
    # Chinese characters
    elif mode == MODE_SERIF_AND_COMMON_HANYU:
        font = gui.FontDescription(serif)
        font.add_typeface_for_language(hanzi, "zh")
    # MODE_COMMON_HANYU_EN the Chinese font for both English and the common
    # characters
    elif mode == MODE_COMMON_HANYU_EN:
        font = gui.FontDescription(hanzi)
        font.add_typeface_for_language(hanzi, "zh")
    # MODE_ALL_HANYU uses the default English font but includes all the Chinese
    # characters (which uses a substantial amount of memory)
    elif mode == MODE_ALL_HANYU:
        font = gui.FontDescription()
        font.add_typeface_for_language(hanzi, "zh_all")
    elif mode == MODE_CUSTOM_CHARS:
        range = [0x2654, 0x2655, 0x2656, 0x2657, 0x2658, 0x2659]
        font = gui.FontDescription()
        font.add_typeface_for_code_points(chess, range)

    if font is not None:
        gui.Application.instance.set_font(gui.Application.DEFAULT_FONT_ID, font)

    w = ExampleWindow()
    gui.Application.instance.run()


class ExampleWindow:
    MENU_CHECKABLE = 1
    MENU_DISABLED = 2
    MENU_QUIT = 3

    def __init__(self):
        self.window = gui.Application.instance.create_window("Test", 400, 768)
        # self.window = gui.Application.instance.create_window("Test", 400, 768,
        #                                                        x=50, y=100)
        w = self.window  # for more concise code

        # Rather than specifying sizes in pixels, which may vary in size based
        # on the monitor, especially on macOS which has 220 dpi monitors, use
        # the em-size. This way sizings will be proportional to the font size,
        # which will create a more visually consistent size across platforms.
        em = w.theme.font_size

        # Widgets are laid out in layouts: gui.Horiz, gui.Vert,
        # gui.CollapsableVert, and gui.VGrid. By nesting the layouts we can
        # achieve complex designs. Usually we use a vertical layout as the
        # topmost widget, since widgets tend to be organized from top to bottom.
        # Within that, we usually have a series of horizontal layouts for each
        # row.
        layout = gui.Vert(0, gui.Margins(0.5 * em, 0.5 * em, 0.5 * em,
                                         0.5 * em))

        # Create the menu. The menu is global (because the macOS menu is global),
        # so only create it once.
        if gui.Application.instance.menubar is None:
            menubar = gui.Menu()
            test_menu = gui.Menu()
            test_menu.add_item("An option", ExampleWindow.MENU_CHECKABLE)
            test_menu.set_checked(ExampleWindow.MENU_CHECKABLE, True)
            test_menu.add_item("Unavailable feature",
                               ExampleWindow.MENU_DISABLED)
            test_menu.set_enabled(ExampleWindow.MENU_DISABLED, False)
            test_menu.add_separator()
            test_menu.add_item("Quit", ExampleWindow.MENU_QUIT)
            # On macOS the first menu item is the application menu item and will
            # always be the name of the application (probably "Python"),
            # regardless of what you pass in here. The application menu is
            # typically where About..., Preferences..., and Quit go.
            menubar.add_menu("Test", test_menu)
            gui.Application.instance.menubar = menubar

        # Each window needs to know what to do with the menu items, so we need
        # to tell the window how to handle menu items.
        w.set_on_menu_item_activated(ExampleWindow.MENU_CHECKABLE,
                                     self._on_menu_checkable)
        w.set_on_menu_item_activated(ExampleWindow.MENU_QUIT,
                                     self._on_menu_quit)

        # Create a file-chooser widget. One part will be a text edit widget for
        # the filename and clicking on the button will let the user choose using
        # the file dialog.
        self._fileedit = gui.TextEdit()
        filedlgbutton = gui.Button("...")
        filedlgbutton.horizontal_padding_em = 0.5
        filedlgbutton.vertical_padding_em = 0
        filedlgbutton.set_on_clicked(self._on_filedlg_button)

        # (Create the horizontal widget for the row. This will make sure the
        # text editor takes up as much space as it can.)
        fileedit_layout = gui.Horiz()
        fileedit_layout.add_child(gui.Label("Model file"))
        fileedit_layout.add_child(self._fileedit)
        fileedit_layout.add_fixed(0.25 * em)
        fileedit_layout.add_child(filedlgbutton)
        # add to the top-level (vertical) layout
        layout.add_child(fileedit_layout)

        # Create a collapsible vertical widget, which takes up enough vertical
        # space for all its children when open, but only enough for text when
        # closed. This is useful for property pages, so the user can hide sets
        # of properties they rarely use. All layouts take a spacing parameter,
        # which is the spacinging between items in the widget, and a margins
        # parameter, which specifies the spacing of the left, top, right,
        # bottom margins. (This acts like the 'padding' property in CSS.)
        collapse = gui.CollapsableVert("Widgets", 0.33 * em,
                                       gui.Margins(em, 0, 0, 0))
        if mode == MODE_CUSTOM_CHARS:
            self._label = gui.Label("♔♕♖♗♘♙")
        elif mode == MODE_ALL_HANYU:
            self._label = gui.Label("天地玄黃,宇宙洪荒。日月盈昃,辰宿列張。")
        else:
            self._label = gui.Label("锄禾日当午,汗滴禾下土。谁知盘中餐,粒粒皆辛苦。")
        self._label.text_color = gui.Color(1.0, 0.5, 0.0)
        collapse.add_child(self._label)

        # Create a checkbox. Checking or unchecking would usually be used to set
        # a binary property, but in this case it will show a simple message box,
        # which illustrates how to create simple dialogs.
        cb = gui.Checkbox("Enable some really cool effect")
        cb.set_on_checked(self._on_cb)  # set the callback function
        collapse.add_child(cb)

        # Create a color editor. We will change the color of the orange label
        # above when the color changes.
        color = gui.ColorEdit()
        color.color_value = self._label.text_color
        color.set_on_value_changed(self._on_color)
        collapse.add_child(color)

        # This is a combobox, nothing fancy here, just set a simple function to
        # handle the user selecting an item.
        combo = gui.Combobox()
        combo.add_item("Show point labels")
        combo.add_item("Show point velocity")
        combo.add_item("Show bounding boxes")
        combo.set_on_selection_changed(self._on_combo)
        collapse.add_child(combo)

        # Add a simple image
        logo = gui.ImageWidget(basedir + "/icon-32.png")
        collapse.add_child(logo)

        # Add a list of items
        lv = gui.ListView()
        lv.set_items(["Ground", "Trees", "Buildings" "Cars", "People"])
        lv.selected_index = lv.selected_index + 2  # initially is -1, so now 1
        lv.set_on_selection_changed(self._on_list)
        collapse.add_child(lv)

        # Add a tree view
        tree = gui.TreeView()
        tree.add_text_item(tree.get_root_item(), "Camera")
        geo_id = tree.add_text_item(tree.get_root_item(), "Geometries")
        mesh_id = tree.add_text_item(geo_id, "Mesh")
        tree.add_text_item(mesh_id, "Triangles")
        tree.add_text_item(mesh_id, "Albedo texture")
        tree.add_text_item(mesh_id, "Normal map")
        points_id = tree.add_text_item(geo_id, "Points")
        tree.can_select_items_with_children = True
        tree.set_on_selection_changed(self._on_tree)
        # does not call on_selection_changed: user did not change selection
        tree.selected_item = points_id
        collapse.add_child(tree)

        # Add two number editors, one for integers and one for floating point
        # Number editor can clamp numbers to a range, although this is more
        # useful for integers than for floating point.
        intedit = gui.NumberEdit(gui.NumberEdit.INT)
        intedit.int_value = 0
        intedit.set_limits(1, 19)  # value coerced to 1
        intedit.int_value = intedit.int_value + 2  # value should be 3
        doubleedit = gui.NumberEdit(gui.NumberEdit.DOUBLE)
        numlayout = gui.Horiz()
        numlayout.add_child(gui.Label("int"))
        numlayout.add_child(intedit)
        numlayout.add_fixed(em)  # manual spacing (could set it in Horiz() ctor)
        numlayout.add_child(gui.Label("double"))
        numlayout.add_child(doubleedit)
        collapse.add_child(numlayout)

        # Create a progress bar. It ranges from 0.0 to 1.0.
        self._progress = gui.ProgressBar()
        self._progress.value = 0.25  # 25% complete
        self._progress.value = self._progress.value + 0.08  # 0.25 + 0.08 = 33%
        prog_layout = gui.Horiz(em)
        prog_layout.add_child(gui.Label("Progress..."))
        prog_layout.add_child(self._progress)
        collapse.add_child(prog_layout)

        # Create a slider. It acts very similar to NumberEdit except that the
        # user moves a slider and cannot type the number.
        slider = gui.Slider(gui.Slider.INT)
        slider.set_limits(5, 13)
        slider.set_on_value_changed(self._on_slider)
        collapse.add_child(slider)

        # Create a text editor. The placeholder text (if not empty) will be
        # displayed when there is no text, as concise help, or visible tooltip.
        tedit = gui.TextEdit()
        tedit.placeholder_text = "Edit me some text here"

        # on_text_changed fires whenever the user changes the text (but not if
        # the text_value property is assigned to).
        tedit.set_on_text_changed(self._on_text_changed)

        # on_value_changed fires whenever the user signals that they are finished
        # editing the text, either by pressing return or by clicking outside of
        # the text editor, thus losing text focus.
        tedit.set_on_value_changed(self._on_value_changed)
        collapse.add_child(tedit)

        # Create a widget for showing/editing a 3D vector
        vedit = gui.VectorEdit()
        vedit.vector_value = [1, 2, 3]
        vedit.set_on_value_changed(self._on_vedit)
        collapse.add_child(vedit)

        # Create a VGrid layout. This layout specifies the number of columns
        # (two, in this case), and will place the first child in the first
        # column, the second in the second, the third in the first, the fourth
        # in the second, etc.
        # So:
        #      2 cols             3 cols                  4 cols
        #   |  1  |  2  |   |  1  |  2  |  3  |   |  1  |  2  |  3  |  4  |
        #   |  3  |  4  |   |  4  |  5  |  6  |   |  5  |  6  |  7  |  8  |
        #   |  5  |  6  |   |  7  |  8  |  9  |   |  9  | 10  | 11  | 12  |
        #   |    ...    |   |       ...       |   |         ...           |
        vgrid = gui.VGrid(2)
        vgrid.add_child(gui.Label("Trees"))
        vgrid.add_child(gui.Label("12 items"))
        vgrid.add_child(gui.Label("People"))
        vgrid.add_child(gui.Label("2 (93% certainty)"))
        vgrid.add_child(gui.Label("Cars"))
        vgrid.add_child(gui.Label("5 (87% certainty)"))
        collapse.add_child(vgrid)

        # Create a tab control. This is really a set of N layouts on top of each
        # other, but with only one selected.
        tabs = gui.TabControl()
        tab1 = gui.Vert()
        tab1.add_child(gui.Checkbox("Enable option 1"))
        tab1.add_child(gui.Checkbox("Enable option 2"))
        tab1.add_child(gui.Checkbox("Enable option 3"))
        tabs.add_tab("Options", tab1)
        tab2 = gui.Vert()
        tab2.add_child(gui.Label("No plugins detected"))
        tab2.add_stretch()
        tabs.add_tab("Plugins", tab2)
        collapse.add_child(tabs)

        # Quit button. (Typically this is a menu item)
        button_layout = gui.Horiz()
        ok_button = gui.Button("Ok")
        ok_button.set_on_clicked(self._on_ok)
        button_layout.add_stretch()
        button_layout.add_child(ok_button)

        layout.add_child(collapse)
        layout.add_child(button_layout)

        # We're done, set the window's layout
        w.add_child(layout)

    def _on_filedlg_button(self):
        filedlg = gui.FileDialog(gui.FileDialog.OPEN, "Select file",
                                 self.window.theme)
        filedlg.add_filter(".obj .ply .stl", "Triangle mesh (.obj, .ply, .stl)")
        filedlg.add_filter("", "All files")
        filedlg.set_on_cancel(self._on_filedlg_cancel)
        filedlg.set_on_done(self._on_filedlg_done)
        self.window.show_dialog(filedlg)

    def _on_filedlg_cancel(self):
        self.window.close_dialog()

    def _on_filedlg_done(self, path):
        self._fileedit.text_value = path
        self.window.close_dialog()

    def _on_cb(self, is_checked):
        if is_checked:
            text = "Sorry, effects are unimplemented"
        else:
            text = "Good choice"

        self.show_message_dialog("There might be a problem...", text)

    # This function is essentially the same as window.show_message_box(),
    # so for something this simple just use that, but it illustrates making a
    # dialog.
    def show_message_dialog(self, title, message):
        # A Dialog is just a widget, so you make its child a layout just like
        # a Window.
        dlg = gui.Dialog(title)

        # Add the message text
        em = self.window.theme.font_size
        dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
        dlg_layout.add_child(gui.Label(message))

        # Add the Ok button. We need to define a callback function to handle
        # the click.
        ok_button = gui.Button("Ok")
        ok_button.set_on_clicked(self._on_dialog_ok)

        # We want the Ok button to be an the right side, so we need to add
        # a stretch item to the layout, otherwise the button will be the size
        # of the entire row. A stretch item takes up as much space as it can,
        # which forces the button to be its minimum size.
        button_layout = gui.Horiz()
        button_layout.add_stretch()
        button_layout.add_child(ok_button)

        # Add the button layout,
        dlg_layout.add_child(button_layout)
        # ... then add the layout as the child of the Dialog
        dlg.add_child(dlg_layout)
        # ... and now we can show the dialog
        self.window.show_dialog(dlg)

    def _on_dialog_ok(self):
        self.window.close_dialog()

    def _on_color(self, new_color):
        self._label.text_color = new_color

    def _on_combo(self, new_val, new_idx):
        print(new_idx, new_val)

    def _on_list(self, new_val, is_dbl_click):
        print(new_val)

    def _on_tree(self, new_item_id):
        print(new_item_id)

    def _on_slider(self, new_val):
        self._progress.value = new_val / 20.0

    def _on_text_changed(self, new_text):
        print("edit:", new_text)

    def _on_value_changed(self, new_text):
        print("value:", new_text)

    def _on_vedit(self, new_val):
        print(new_val)

    def _on_ok(self):
        gui.Application.instance.quit()

    def _on_menu_checkable(self):
        gui.Application.instance.menubar.set_checked(
            ExampleWindow.MENU_CHECKABLE,
            not gui.Application.instance.menubar.is_checked(
                ExampleWindow.MENU_CHECKABLE))

    def _on_menu_quit(self):
        gui.Application.instance.quit()


# This class is essentially the same as window.show_message_box(),
# so for something this simple just use that, but it illustrates making a
# dialog.
class MessageBox:

    def __init__(self, title, message):
        self._window = None

        # A Dialog is just a widget, so you make its child a layout just like
        # a Window.
        dlg = gui.Dialog(title)

        # Add the message text
        em = self.window.theme.font_size
        dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
        dlg_layout.add_child(gui.Label(message))

        # Add the Ok button. We need to define a callback function to handle
        # the click.
        ok_button = gui.Button("Ok")
        ok_button.set_on_clicked(self._on_ok)

        # We want the Ok button to be an the right side, so we need to add
        # a stretch item to the layout, otherwise the button will be the size
        # of the entire row. A stretch item takes up as much space as it can,
        # which forces the button to be its minimum size.
        button_layout = gui.Horiz()
        button_layout.add_stretch()
        button_layout.add_child(ok_button)

        # Add the button layout,
        dlg_layout.add_child(button_layout)
        # ... then add the layout as the child of the Dialog
        dlg.add_child(dlg_layout)

    def show(self, window):
        self._window = window

    def _on_ok(self):
        self._window.close_dialog()


if __name__ == "__main__":
    main()

online_processing.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

- Connects to a RGBD camera or RGBD video file (currently
  RealSense camera and bag file format are supported).
- Captures / reads color and depth frames. Allow recording from camera.
- Convert frames to point cloud, optionally with normals.
- Visualize point cloud video and results.
- Save point clouds and RGBD images for selected frames.

For this example, Open3D must be built with -DBUILD_LIBREALSENSE=ON
"""

import os
import json
import time
import logging as log
import argparse
import threading
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
import numpy as np
import open3d as o3d
import open3d.visualization.gui as gui
import open3d.visualization.rendering as rendering


# Camera and processing
class PipelineModel:
    """Controls IO (camera, video file, recording, saving frames). Methods run
    in worker threads."""

    def __init__(self,
                 update_view,
                 camera_config_file=None,
                 rgbd_video=None,
                 device=None):
        """Initialize.

        Args:
            update_view (callback): Callback to update display elements for a
                frame.
            camera_config_file (str): Camera configuration json file.
            rgbd_video (str): RS bag file containing the RGBD video. If this is
                provided, connected cameras are ignored.
            device (str): Compute device (e.g.: 'cpu:0' or 'cuda:0').
        """
        self.update_view = update_view
        if device:
            self.device = device.lower()
        else:
            self.device = 'cuda:0' if o3d.core.cuda.is_available() else 'cpu:0'
        self.o3d_device = o3d.core.Device(self.device)

        self.video = None
        self.camera = None
        self.flag_capture = False
        self.cv_capture = threading.Condition()  # condition variable
        self.recording = False  # Are we currently recording
        self.flag_record = False  # Request to start/stop recording
        if rgbd_video:  # Video file
            self.video = o3d.t.io.RGBDVideoReader.create(rgbd_video)
            self.rgbd_metadata = self.video.metadata
            self.status_message = f"Video {rgbd_video} opened."

        else:  # RGBD camera
            now = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
            filename = f"{now}.bag"
            self.camera = o3d.t.io.RealSenseSensor()
            if camera_config_file:
                with open(camera_config_file) as ccf:
                    self.camera.init_sensor(o3d.t.io.RealSenseSensorConfig(
                        json.load(ccf)),
                                            filename=filename)
            else:
                self.camera.init_sensor(filename=filename)
            self.camera.start_capture(start_record=False)
            self.rgbd_metadata = self.camera.get_metadata()
            self.status_message = f"Camera {self.rgbd_metadata.serial_number} opened."

        log.info(self.rgbd_metadata)

        # RGBD -> PCD
        self.extrinsics = o3d.core.Tensor.eye(4,
                                              dtype=o3d.core.Dtype.Float32,
                                              device=self.o3d_device)
        self.intrinsic_matrix = o3d.core.Tensor(
            self.rgbd_metadata.intrinsics.intrinsic_matrix,
            dtype=o3d.core.Dtype.Float32,
            device=self.o3d_device)
        self.depth_max = 3.0  # m
        self.pcd_stride = 2  # downsample point cloud, may increase frame rate
        self.flag_normals = False
        self.flag_save_rgbd = False
        self.flag_save_pcd = False

        self.pcd_frame = None
        self.rgbd_frame = None
        self.executor = ThreadPoolExecutor(max_workers=3,
                                           thread_name_prefix='Capture-Save')
        self.flag_exit = False

    @property
    def max_points(self):
        """Max points in one frame for the camera or RGBD video resolution."""
        return self.rgbd_metadata.width * self.rgbd_metadata.height

    @property
    def vfov(self):
        """Camera or RGBD video vertical field of view."""
        return np.rad2deg(2 * np.arctan(self.intrinsic_matrix[1, 2].item() /
                                        self.intrinsic_matrix[1, 1].item()))

    def run(self):
        """Run pipeline."""
        n_pts = 0
        frame_id = 0
        t1 = time.perf_counter()
        if self.video:
            self.rgbd_frame = self.video.next_frame()
        else:
            self.rgbd_frame = self.camera.capture_frame(
                wait=True, align_depth_to_color=True)

        pcd_errors = 0
        while (not self.flag_exit and
               (self.video is None or  # Camera
                (self.video and not self.video.is_eof()))):  # Video
            if self.video:
                future_rgbd_frame = self.executor.submit(self.video.next_frame)
            else:
                future_rgbd_frame = self.executor.submit(
                    self.camera.capture_frame,
                    wait=True,
                    align_depth_to_color=True)

            if self.flag_save_pcd:
                self.save_pcd()
                self.flag_save_pcd = False
            try:
                self.rgbd_frame = self.rgbd_frame.to(self.o3d_device)
                self.pcd_frame = o3d.t.geometry.PointCloud.create_from_rgbd_image(
                    self.rgbd_frame, self.intrinsic_matrix, self.extrinsics,
                    self.rgbd_metadata.depth_scale, self.depth_max,
                    self.pcd_stride, self.flag_normals)
                depth_in_color = self.rgbd_frame.depth.colorize_depth(
                    self.rgbd_metadata.depth_scale, 0, self.depth_max)
            except RuntimeError:
                pcd_errors += 1

            if self.pcd_frame.is_empty():
                log.warning(f"No valid depth data in frame {frame_id})")
                continue

            n_pts += self.pcd_frame.point.positions.shape[0]
            if frame_id % 60 == 0 and frame_id > 0:
                t0, t1 = t1, time.perf_counter()
                log.debug(f"\nframe_id = {frame_id}, \t {(t1-t0)*1000./60:0.2f}"
                          f"ms/frame \t {(t1-t0)*1e9/n_pts} ms/Mp\t")
                n_pts = 0
            frame_elements = {
                'color': self.rgbd_frame.color.cpu(),
                'depth': depth_in_color.cpu(),
                'pcd': self.pcd_frame.cpu(),
                'status_message': self.status_message
            }
            self.update_view(frame_elements)

            if self.flag_save_rgbd:
                self.save_rgbd()
                self.flag_save_rgbd = False
            self.rgbd_frame = future_rgbd_frame.result()
            with self.cv_capture:  # Wait for capture to be enabled
                self.cv_capture.wait_for(
                    predicate=lambda: self.flag_capture or self.flag_exit)
            self.toggle_record()
            frame_id += 1

        if self.camera:
            self.camera.stop_capture()
        else:
            self.video.close()
        self.executor.shutdown()
        log.debug(f"create_from_depth_image() errors = {pcd_errors}")

    def toggle_record(self):
        if self.camera is not None:
            if self.flag_record and not self.recording:
                self.camera.resume_record()
                self.recording = True
            elif not self.flag_record and self.recording:
                self.camera.pause_record()
                self.recording = False

    def save_pcd(self):
        """Save current point cloud."""
        now = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
        filename = f"{self.rgbd_metadata.serial_number}_pcd_{now}.ply"
        # Convert colors to uint8 for compatibility
        self.pcd_frame.point.colors = (self.pcd_frame.point.colors * 255).to(
            o3d.core.Dtype.UInt8)
        self.executor.submit(o3d.t.io.write_point_cloud,
                             filename,
                             self.pcd_frame,
                             write_ascii=False,
                             compressed=True,
                             print_progress=False)
        self.status_message = f"Saving point cloud to {filename}."

    def save_rgbd(self):
        """Save current RGBD image pair."""
        now = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
        filename = f"{self.rgbd_metadata.serial_number}_color_{now}.jpg"
        self.executor.submit(o3d.t.io.write_image, filename,
                             self.rgbd_frame.color)
        filename = f"{self.rgbd_metadata.serial_number}_depth_{now}.png"
        self.executor.submit(o3d.t.io.write_image, filename,
                             self.rgbd_frame.depth)
        self.status_message = (
            f"Saving RGBD images to {filename[:-3]}.{{jpg,png}}.")


class PipelineView:
    """Controls display and user interface. All methods must run in the main thread."""

    def __init__(self, vfov=60, max_pcd_vertices=1 << 20, **callbacks):
        """Initialize.

        Args:
            vfov (float): Vertical field of view for the 3D scene.
            max_pcd_vertices (int): Maximum point clud verties for which memory
                is allocated.
            callbacks (dict of kwargs): Callbacks provided by the controller
                for various operations.
        """

        self.vfov = vfov
        self.max_pcd_vertices = max_pcd_vertices

        gui.Application.instance.initialize()
        self.window = gui.Application.instance.create_window(
            "Open3D || Online RGBD Video Processing", 1280, 960)
        # Called on window layout (eg: resize)
        self.window.set_on_layout(self.on_layout)
        self.window.set_on_close(callbacks['on_window_close'])

        self.pcd_material = o3d.visualization.rendering.MaterialRecord()
        self.pcd_material.shader = "defaultLit"
        # Set n_pixels displayed for each 3D point, accounting for HiDPI scaling
        self.pcd_material.point_size = int(4 * self.window.scaling)

        # 3D scene
        self.pcdview = gui.SceneWidget()
        self.window.add_child(self.pcdview)
        self.pcdview.enable_scene_caching(
            True)  # makes UI _much_ more responsive
        self.pcdview.scene = rendering.Open3DScene(self.window.renderer)
        self.pcdview.scene.set_background([1, 1, 1, 1])  # White background
        self.pcdview.scene.set_lighting(
            rendering.Open3DScene.LightingProfile.SOFT_SHADOWS, [0, -6, 0])
        # Point cloud bounds, depends on the sensor range
        self.pcd_bounds = o3d.geometry.AxisAlignedBoundingBox([-3, -3, 0],
                                                              [3, 3, 6])
        self.camera_view()  # Initially look from the camera
        em = self.window.theme.font_size

        # Options panel
        self.panel = gui.Vert(em, gui.Margins(em, em, em, em))
        self.panel.preferred_width = int(360 * self.window.scaling)
        self.window.add_child(self.panel)
        toggles = gui.Horiz(em)
        self.panel.add_child(toggles)

        toggle_capture = gui.ToggleSwitch("Capture / Play")
        toggle_capture.is_on = False
        toggle_capture.set_on_clicked(
            callbacks['on_toggle_capture'])  # callback
        toggles.add_child(toggle_capture)

        self.flag_normals = False
        self.toggle_normals = gui.ToggleSwitch("Colors / Normals")
        self.toggle_normals.is_on = False
        self.toggle_normals.set_on_clicked(
            callbacks['on_toggle_normals'])  # callback
        toggles.add_child(self.toggle_normals)

        view_buttons = gui.Horiz(em)
        self.panel.add_child(view_buttons)
        view_buttons.add_stretch()  # for centering
        camera_view = gui.Button("Camera view")
        camera_view.set_on_clicked(self.camera_view)  # callback
        view_buttons.add_child(camera_view)
        birds_eye_view = gui.Button("Bird's eye view")
        birds_eye_view.set_on_clicked(self.birds_eye_view)  # callback
        view_buttons.add_child(birds_eye_view)
        view_buttons.add_stretch()  # for centering

        save_toggle = gui.Horiz(em)
        self.panel.add_child(save_toggle)
        save_toggle.add_child(gui.Label("Record / Save"))
        self.toggle_record = None
        if callbacks['on_toggle_record'] is not None:
            save_toggle.add_fixed(1.5 * em)
            self.toggle_record = gui.ToggleSwitch("Video")
            self.toggle_record.is_on = False
            self.toggle_record.set_on_clicked(callbacks['on_toggle_record'])
            save_toggle.add_child(self.toggle_record)

        save_buttons = gui.Horiz(em)
        self.panel.add_child(save_buttons)
        save_buttons.add_stretch()  # for centering
        save_pcd = gui.Button("Save Point cloud")
        save_pcd.set_on_clicked(callbacks['on_save_pcd'])
        save_buttons.add_child(save_pcd)
        save_rgbd = gui.Button("Save RGBD frame")
        save_rgbd.set_on_clicked(callbacks['on_save_rgbd'])
        save_buttons.add_child(save_rgbd)
        save_buttons.add_stretch()  # for centering

        self.video_size = (int(240 * self.window.scaling),
                           int(320 * self.window.scaling), 3)
        self.show_color = gui.CollapsableVert("Color image")
        self.show_color.set_is_open(False)
        self.panel.add_child(self.show_color)
        self.color_video = gui.ImageWidget(
            o3d.geometry.Image(np.zeros(self.video_size, dtype=np.uint8)))
        self.show_color.add_child(self.color_video)
        self.show_depth = gui.CollapsableVert("Depth image")
        self.show_depth.set_is_open(False)
        self.panel.add_child(self.show_depth)
        self.depth_video = gui.ImageWidget(
            o3d.geometry.Image(np.zeros(self.video_size, dtype=np.uint8)))
        self.show_depth.add_child(self.depth_video)

        self.status_message = gui.Label("")
        self.panel.add_child(self.status_message)

        self.flag_exit = False
        self.flag_gui_init = False

    def update(self, frame_elements):
        """Update visualization with point cloud and images. Must run in main
        thread since this makes GUI calls.

        Args:
            frame_elements: dict {element_type: geometry element}.
                Dictionary of element types to geometry elements to be updated
                in the GUI:
                    'pcd': point cloud,
                    'color': rgb image (3 channel, uint8),
                    'depth': depth image (uint8),
                    'status_message': message
        """
        if not self.flag_gui_init:
            # Set dummy point cloud to allocate graphics memory
            dummy_pcd = o3d.t.geometry.PointCloud({
                'positions':
                    o3d.core.Tensor.zeros((self.max_pcd_vertices, 3),
                                          o3d.core.Dtype.Float32),
                'colors':
                    o3d.core.Tensor.zeros((self.max_pcd_vertices, 3),
                                          o3d.core.Dtype.Float32),
                'normals':
                    o3d.core.Tensor.zeros((self.max_pcd_vertices, 3),
                                          o3d.core.Dtype.Float32)
            })
            if self.pcdview.scene.has_geometry('pcd'):
                self.pcdview.scene.remove_geometry('pcd')

            self.pcd_material.shader = "normals" if self.flag_normals else "defaultLit"
            self.pcdview.scene.add_geometry('pcd', dummy_pcd, self.pcd_material)
            self.flag_gui_init = True

        # TODO(ssheorey) Switch to update_geometry() after #3452 is fixed
        if os.name == 'nt':
            self.pcdview.scene.remove_geometry('pcd')
            self.pcdview.scene.add_geometry('pcd', frame_elements['pcd'],
                                            self.pcd_material)
        else:
            update_flags = (rendering.Scene.UPDATE_POINTS_FLAG |
                            rendering.Scene.UPDATE_COLORS_FLAG |
                            (rendering.Scene.UPDATE_NORMALS_FLAG
                             if self.flag_normals else 0))
            self.pcdview.scene.scene.update_geometry('pcd',
                                                     frame_elements['pcd'],
                                                     update_flags)

        # Update color and depth images
        # TODO(ssheorey) Remove CPU transfer after we have CUDA -> OpenGL bridge
        if self.show_color.get_is_open() and 'color' in frame_elements:
            sampling_ratio = self.video_size[1] / frame_elements['color'].columns
            self.color_video.update_image(
                frame_elements['color'].resize(sampling_ratio).cpu())
        if self.show_depth.get_is_open() and 'depth' in frame_elements:
            sampling_ratio = self.video_size[1] / frame_elements['depth'].columns
            self.depth_video.update_image(
                frame_elements['depth'].resize(sampling_ratio).cpu())

        if 'status_message' in frame_elements:
            self.status_message.text = frame_elements["status_message"]

        self.pcdview.force_redraw()

    def camera_view(self):
        """Callback to reset point cloud view to the camera"""
        self.pcdview.setup_camera(self.vfov, self.pcd_bounds, [0, 0, 0])
        # Look at [0, 0, 1] from camera placed at [0, 0, 0] with Y axis
        # pointing at [0, -1, 0]
        self.pcdview.scene.camera.look_at([0, 0, 1], [0, 0, 0], [0, -1, 0])

    def birds_eye_view(self):
        """Callback to reset point cloud view to birds eye (overhead) view"""
        self.pcdview.setup_camera(self.vfov, self.pcd_bounds, [0, 0, 0])
        self.pcdview.scene.camera.look_at([0, 0, 1.5], [0, 3, 1.5], [0, -1, 0])

    def on_layout(self, layout_context):
        # The on_layout callback should set the frame (position + size) of every
        # child correctly. After the callback is done the window will layout
        # the grandchildren.
        """Callback on window initialize / resize"""
        frame = self.window.content_rect
        self.pcdview.frame = frame
        panel_size = self.panel.calc_preferred_size(layout_context,
                                                    self.panel.Constraints())
        self.panel.frame = gui.Rect(frame.get_right() - panel_size.width,
                                    frame.y, panel_size.width,
                                    panel_size.height)


class PipelineController:
    """Entry point for the app. Controls the PipelineModel object for IO and
    processing  and the PipelineView object for display and UI. All methods
    operate on the main thread.
    """

    def __init__(self, camera_config_file=None, rgbd_video=None, device=None):
        """Initialize.

        Args:
            camera_config_file (str): Camera configuration json file.
            rgbd_video (str): RS bag file containing the RGBD video. If this is
                provided, connected cameras are ignored.
            device (str): Compute device (e.g.: 'cpu:0' or 'cuda:0').
        """
        self.pipeline_model = PipelineModel(self.update_view,
                                            camera_config_file, rgbd_video,
                                            device)

        self.pipeline_view = PipelineView(
            1.25 * self.pipeline_model.vfov,
            self.pipeline_model.max_points,
            on_window_close=self.on_window_close,
            on_toggle_capture=self.on_toggle_capture,
            on_save_pcd=self.on_save_pcd,
            on_save_rgbd=self.on_save_rgbd,
            on_toggle_record=self.on_toggle_record
            if rgbd_video is None else None,
            on_toggle_normals=self.on_toggle_normals)

        threading.Thread(name='PipelineModel',
                         target=self.pipeline_model.run).start()
        gui.Application.instance.run()

    def update_view(self, frame_elements):
        """Updates view with new data. May be called from any thread.

        Args:
            frame_elements (dict): Display elements (point cloud and images)
                from the new frame to be shown.
        """
        gui.Application.instance.post_to_main_thread(
            self.pipeline_view.window,
            lambda: self.pipeline_view.update(frame_elements))

    def on_toggle_capture(self, is_enabled):
        """Callback to toggle capture."""
        self.pipeline_model.flag_capture = is_enabled
        if not is_enabled:
            self.on_toggle_record(False)
            if self.pipeline_view.toggle_record is not None:
                self.pipeline_view.toggle_record.is_on = False
        else:
            with self.pipeline_model.cv_capture:
                self.pipeline_model.cv_capture.notify()

    def on_toggle_record(self, is_enabled):
        """Callback to toggle recording RGBD video."""
        self.pipeline_model.flag_record = is_enabled

    def on_toggle_normals(self, is_enabled):
        """Callback to toggle display of normals"""
        self.pipeline_model.flag_normals = is_enabled
        self.pipeline_view.flag_normals = is_enabled
        self.pipeline_view.flag_gui_init = False

    def on_window_close(self):
        """Callback when the user closes the application window."""
        self.pipeline_model.flag_exit = True
        with self.pipeline_model.cv_capture:
            self.pipeline_model.cv_capture.notify_all()
        return True  # OK to close window

    def on_save_pcd(self):
        """Callback to save current point cloud."""
        self.pipeline_model.flag_save_pcd = True

    def on_save_rgbd(self):
        """Callback to save current RGBD image pair."""
        self.pipeline_model.flag_save_rgbd = True


if __name__ == "__main__":

    log.basicConfig(level=log.INFO)
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument('--camera-config',
                        help='RGBD camera configuration JSON file')
    parser.add_argument('--rgbd-video', help='RGBD video file (RealSense bag)')
    parser.add_argument('--device',
                        help='Device to run computations. e.g. cpu:0 or cuda:0 '
                        'Default is CUDA GPU if available, else CPU.')

    args = parser.parse_args()
    if args.camera_config and args.rgbd_video:
        log.critical(
            "Please provide only one of --camera-config and --rgbd-video arguments"
        )
    else:
        PipelineController(args.camera_config, args.rgbd_video, args.device)

remove_geometry.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import open3d as o3d
import numpy as np
import time
import copy


def visualize_non_blocking(vis, pcds):
    for pcd in pcds:
        vis.update_geometry(pcd)
    vis.poll_events()
    vis.update_renderer()


pcd_data = o3d.data.PCDPointCloud()
pcd_orig = o3d.io.read_point_cloud(pcd_data.path)
flip_transform = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
pcd_orig.transform(flip_transform)
n_pcd = 5
pcds = []
for i in range(n_pcd):
    pcds.append(copy.deepcopy(pcd_orig))
    trans = np.identity(4)
    trans[:3, 3] = [3 * i, 0, 0]
    pcds[i].transform(trans)

vis = o3d.visualization.Visualizer()
vis.create_window()
start_time = time.time()
added = [False] * n_pcd

curr_sec = int(time.time() - start_time)
prev_sec = curr_sec - 1

while True:
    curr_sec = int(time.time() - start_time)
    if curr_sec - prev_sec == 1:
        prev_sec = curr_sec

        for i in range(n_pcd):
            if curr_sec % (n_pcd * 2) == i and not added[i]:
                vis.add_geometry(pcds[i])
                added[i] = True
                print("Adding %d" % i)
            if curr_sec % (n_pcd * 2) == (i + n_pcd) and added[i]:
                vis.remove_geometry(pcds[i])
                added[i] = False
                print("Removing %d" % i)

    visualize_non_blocking(vis, pcds)

render_to_image.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import open3d as o3d
import open3d.visualization.rendering as rendering


def main():
    render = rendering.OffscreenRenderer(640, 480)

    yellow = rendering.MaterialRecord()
    yellow.base_color = [1.0, 0.75, 0.0, 1.0]
    yellow.shader = "defaultLit"

    green = rendering.MaterialRecord()
    green.base_color = [0.0, 0.5, 0.0, 1.0]
    green.shader = "defaultLit"

    grey = rendering.MaterialRecord()
    grey.base_color = [0.7, 0.7, 0.7, 1.0]
    grey.shader = "defaultLit"

    white = rendering.MaterialRecord()
    white.base_color = [1.0, 1.0, 1.0, 1.0]
    white.shader = "defaultLit"

    cyl = o3d.geometry.TriangleMesh.create_cylinder(.05, 3)
    cyl.compute_vertex_normals()
    cyl.translate([-2, 0, 1.5])
    sphere = o3d.geometry.TriangleMesh.create_sphere(.2)
    sphere.compute_vertex_normals()
    sphere.translate([-2, 0, 3])

    box = o3d.geometry.TriangleMesh.create_box(2, 2, 1)
    box.compute_vertex_normals()
    box.translate([-1, -1, 0])
    solid = o3d.geometry.TriangleMesh.create_icosahedron(0.5)
    solid.compute_triangle_normals()
    solid.compute_vertex_normals()
    solid.translate([0, 0, 1.75])

    render.scene.add_geometry("cyl", cyl, green)
    render.scene.add_geometry("sphere", sphere, yellow)
    render.scene.add_geometry("box", box, grey)
    render.scene.add_geometry("solid", solid, white)
    render.setup_camera(60.0, [0, 0, 0], [0, 10, 0], [0, 0, 1])
    render.scene.scene.set_sun_light([0.707, 0.0, -.707], [1.0, 1.0, 1.0],
                                     75000)
    render.scene.scene.enable_sun_light(True)
    render.scene.show_axes(True)

    img = render.render_to_image()
    print("Saving image at test.png")
    o3d.io.write_image("test.png", img, 9)

    render.setup_camera(60.0, [0, 0, 0], [-10, 0, 0], [0, 0, 1])
    img = render.render_to_image()
    print("Saving image at test2.png")
    o3d.io.write_image("test2.png", img, 9)


if __name__ == "__main__":
    main()

tensorboard_pytorch.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import sys
import numpy as np
import open3d as o3d
# pylint: disable-next=unused-import
from open3d.visualization.tensorboard_plugin.util import to_dict_batch
from torch.utils.tensorboard import SummaryWriter

BASE_LOGDIR = "demo_logs/pytorch/"
MODEL_DIR = os.path.join(
    os.path.dirname(os.path.dirname(os.path.dirname(
        os.path.realpath(__file__)))), "test_data", "monkey")


def small_scale(run_name="small_scale"):
    """Basic demo with cube and cylinder with normals and colors.
    """
    logdir = os.path.join(BASE_LOGDIR, run_name)
    writer = SummaryWriter(logdir)

    cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4, create_uv_map=True)
    cube.compute_vertex_normals()
    cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=1.0,
                                                         height=2.0,
                                                         resolution=20,
                                                         split=4,
                                                         create_uv_map=True)
    cylinder.compute_vertex_normals()
    colors = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
    for step in range(3):
        cube.paint_uniform_color(colors[step])
        writer.add_3d('cube', to_dict_batch([cube]), step=step)
        cylinder.paint_uniform_color(colors[step])
        writer.add_3d('cylinder', to_dict_batch([cylinder]), step=step)


def property_reference(run_name="property_reference"):
    """Produces identical visualization to small_scale, but does not store
    repeated properties of ``vertex_positions`` and ``vertex_normals``.
    """
    logdir = os.path.join(BASE_LOGDIR, run_name)
    writer = SummaryWriter(logdir)

    cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4, create_uv_map=True)
    cube.compute_vertex_normals()
    cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=1.0,
                                                         height=2.0,
                                                         resolution=20,
                                                         split=4,
                                                         create_uv_map=True)
    cylinder.compute_vertex_normals()
    colors = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
    for step in range(3):
        cube.paint_uniform_color(colors[step])
        cube_summary = to_dict_batch([cube])
        if step > 0:
            cube_summary['vertex_positions'] = 0
            cube_summary['vertex_normals'] = 0
        writer.add_3d('cube', cube_summary, step=step)
        cylinder.paint_uniform_color(colors[step])
        cylinder_summary = to_dict_batch([cylinder])
        if step > 0:
            cylinder_summary['vertex_positions'] = 0
            cylinder_summary['vertex_normals'] = 0
        writer.add_3d('cylinder', cylinder_summary, step=step)


def large_scale(n_steps=16,
                batch_size=1,
                base_resolution=200,
                run_name="large_scale"):
    """Generate a large scale summary. Geometry resolution increases linearly
    with step. Each element in a batch is painted a different color.
    """
    logdir = os.path.join(BASE_LOGDIR, run_name)
    writer = SummaryWriter(logdir)
    colors = []
    for k in range(batch_size):
        t = k * np.pi / batch_size
        colors.append(((1 + np.sin(t)) / 2, (1 + np.cos(t)) / 2, t / np.pi))
    for step in range(n_steps):
        resolution = base_resolution * (step + 1)
        cylinder_list = []
        mobius_list = []
        cylinder = o3d.geometry.TriangleMesh.create_cylinder(
            radius=1.0, height=2.0, resolution=resolution, split=4)
        cylinder.compute_vertex_normals()
        mobius = o3d.geometry.TriangleMesh.create_mobius(
            length_split=int(3.5 * resolution),
            width_split=int(0.75 * resolution),
            twists=1,
            raidus=1,
            flatness=1,
            width=1,
            scale=1)
        mobius.compute_vertex_normals()
        for b in range(batch_size):
            cylinder_list.append(copy.deepcopy(cylinder))
            cylinder_list[b].paint_uniform_color(colors[b])
            mobius_list.append(copy.deepcopy(mobius))
            mobius_list[b].paint_uniform_color(colors[b])
        writer.add_3d('cylinder',
                      to_dict_batch(cylinder_list),
                      step=step,
                      max_outputs=batch_size)
        writer.add_3d('mobius',
                      to_dict_batch(mobius_list),
                      step=step,
                      max_outputs=batch_size)


def with_material(model_dir=MODEL_DIR):
    """Read an obj model from a directory and write as a TensorBoard summary.
    """
    model_name = os.path.basename(model_dir)
    logdir = os.path.join(BASE_LOGDIR, model_name)
    model_path = os.path.join(model_dir, model_name + ".obj")
    model = o3d.t.geometry.TriangleMesh.from_legacy(
        o3d.io.read_triangle_mesh(model_path))
    summary_3d = {
        "vertex_positions": model.vertex.positions,
        "vertex_normals": model.vertex.normals,
        "triangle_texture_uvs": model.triangle["texture_uvs"],
        "triangle_indices": model.triangle.indices,
        "material_name": "defaultLit"
    }
    names_to_o3dprop = {"ao": "ambient_occlusion"}

    for texture in ("albedo", "normal", "ao", "metallic", "roughness"):
        texture_file = os.path.join(model_dir, texture + ".png")
        if os.path.exists(texture_file):
            texture = names_to_o3dprop.get(texture, texture)
            summary_3d.update({
                ("material_texture_map_" + texture):
                    o3d.t.io.read_image(texture_file)
            })
            if texture == "metallic":
                summary_3d.update(material_scalar_metallic=1.0)

    writer = SummaryWriter(logdir)
    writer.add_3d(model_name, summary_3d, step=0)


def demo_scene():
    """Write the demo_scene.py example showing rich PBR materials as a summary
    """
    import demo_scene
    geoms = demo_scene.create_scene()
    writer = SummaryWriter(os.path.join(BASE_LOGDIR, 'demo_scene'))
    for geom_data in geoms:
        geom = geom_data["geometry"]
        summary_3d = {}
        for key, tensor in geom.vertex.items():
            summary_3d["vertex_" + key] = tensor
        for key, tensor in geom.triangle.items():
            summary_3d["triangle_" + key] = tensor
        if geom.has_valid_material():
            summary_3d["material_name"] = geom.material.material_name
            for key, value in geom.material.scalar_properties.items():
                summary_3d["material_scalar_" + key] = value
            for key, value in geom.material.vector_properties.items():
                summary_3d["material_vector_" + key] = value
            for key, value in geom.material.texture_maps.items():
                summary_3d["material_texture_map_" + key] = value
        writer.add_3d(geom_data["name"], summary_3d, step=0)


if __name__ == "__main__":

    examples = ('small_scale', 'large_scale', 'property_reference',
                'with_material', 'demo_scene')
    selected = tuple(eg for eg in sys.argv[1:] if eg in examples)
    if len(selected) == 0:
        print(f'Usage: python {__file__} EXAMPLE...')
        print(f'  where EXAMPLE are from {examples}')
        selected = ('property_reference', 'with_material')

    for eg in selected:
        locals()[eg]()

    print(f"Run 'tensorboard --logdir {BASE_LOGDIR}' to visualize the 3D "
          "summary.")

tensorboard_tensorflow.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import sys
import numpy as np
import open3d as o3d
from open3d.visualization.tensorboard_plugin import summary
from open3d.visualization.tensorboard_plugin.util import to_dict_batch
import tensorflow as tf

BASE_LOGDIR = "demo_logs/tf/"
MODEL_DIR = os.path.join(
    os.path.dirname(os.path.dirname(os.path.dirname(
        os.path.realpath(__file__)))), "test_data", "monkey")


def small_scale(run_name="small_scale"):
    """Basic demo with cube and cylinder with normals and colors.
    """
    logdir = os.path.join(BASE_LOGDIR, run_name)
    writer = tf.summary.create_file_writer(logdir)

    cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4, create_uv_map=True)
    cube.compute_vertex_normals()
    cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=1.0,
                                                         height=2.0,
                                                         resolution=20,
                                                         split=4,
                                                         create_uv_map=True)
    cylinder.compute_vertex_normals()
    colors = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
    with writer.as_default():
        for step in range(3):
            cube.paint_uniform_color(colors[step])
            summary.add_3d('cube',
                           to_dict_batch([cube]),
                           step=step,
                           logdir=logdir)
            cylinder.paint_uniform_color(colors[step])
            summary.add_3d('cylinder',
                           to_dict_batch([cylinder]),
                           step=step,
                           logdir=logdir)


def property_reference(run_name="property_reference"):
    """Produces identical visualization to small_scale, but does not store
    repeated properties of ``vertex_positions`` and ``vertex_normals``.
    """
    logdir = os.path.join(BASE_LOGDIR, run_name)
    writer = tf.summary.create_file_writer(logdir)

    cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4, create_uv_map=True)
    cube.compute_vertex_normals()
    cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=1.0,
                                                         height=2.0,
                                                         resolution=20,
                                                         split=4,
                                                         create_uv_map=True)
    cylinder.compute_vertex_normals()
    colors = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
    with writer.as_default():
        for step in range(3):
            cube.paint_uniform_color(colors[step])
            cube_summary = to_dict_batch([cube])
            if step > 0:
                cube_summary['vertex_positions'] = 0
                cube_summary['vertex_normals'] = 0
            summary.add_3d('cube', cube_summary, step=step, logdir=logdir)
            cylinder.paint_uniform_color(colors[step])
            cylinder_summary = to_dict_batch([cylinder])
            if step > 0:
                cylinder_summary['vertex_positions'] = 0
                cylinder_summary['vertex_normals'] = 0
            summary.add_3d('cylinder',
                           cylinder_summary,
                           step=step,
                           logdir=logdir)


def large_scale(n_steps=16,
                batch_size=1,
                base_resolution=200,
                run_name="large_scale"):
    """Generate a large scale summary. Geometry resolution increases linearly
    with step. Each element in a batch is painted a different color.
    """
    logdir = os.path.join(BASE_LOGDIR, run_name)
    writer = tf.summary.create_file_writer(logdir)
    colors = []
    for k in range(batch_size):
        t = k * np.pi / batch_size
        colors.append(((1 + np.sin(t)) / 2, (1 + np.cos(t)) / 2, t / np.pi))
    with writer.as_default():
        for step in range(n_steps):
            resolution = base_resolution * (step + 1)
            cylinder_list = []
            mobius_list = []
            cylinder = o3d.geometry.TriangleMesh.create_cylinder(
                radius=1.0, height=2.0, resolution=resolution, split=4)
            cylinder.compute_vertex_normals()
            mobius = o3d.geometry.TriangleMesh.create_mobius(
                length_split=int(3.5 * resolution),
                width_split=int(0.75 * resolution),
                twists=1,
                raidus=1,
                flatness=1,
                width=1,
                scale=1)
            mobius.compute_vertex_normals()
            for b in range(batch_size):
                cylinder_list.append(copy.deepcopy(cylinder))
                cylinder_list[b].paint_uniform_color(colors[b])
                mobius_list.append(copy.deepcopy(mobius))
                mobius_list[b].paint_uniform_color(colors[b])
            summary.add_3d('cylinder',
                           to_dict_batch(cylinder_list),
                           step=step,
                           logdir=logdir,
                           max_outputs=batch_size)
            summary.add_3d('mobius',
                           to_dict_batch(mobius_list),
                           step=step,
                           logdir=logdir,
                           max_outputs=batch_size)


def with_material(model_dir=MODEL_DIR):
    """Read an obj model from a directory and write as a TensorBoard summary.
    """
    model_name = os.path.basename(model_dir)
    logdir = os.path.join(BASE_LOGDIR, model_name)
    model_path = os.path.join(model_dir, model_name + ".obj")
    model = o3d.t.geometry.TriangleMesh.from_legacy(
        o3d.io.read_triangle_mesh(model_path))
    summary_3d = {
        "vertex_positions": model.vertex.positions,
        "vertex_normals": model.vertex.normals,
        "triangle_texture_uvs": model.triangle["texture_uvs"],
        "triangle_indices": model.triangle.indices,
        "material_name": "defaultLit"
    }
    names_to_o3dprop = {"ao": "ambient_occlusion"}

    for texture in ("albedo", "normal", "ao", "metallic", "roughness"):
        texture_file = os.path.join(model_dir, texture + ".png")
        if os.path.exists(texture_file):
            texture = names_to_o3dprop.get(texture, texture)
            summary_3d.update({
                ("material_texture_map_" + texture):
                    o3d.t.io.read_image(texture_file)
            })
            if texture == "metallic":
                summary_3d.update(material_scalar_metallic=1.0)

    writer = tf.summary.create_file_writer(logdir)
    with writer.as_default():
        summary.add_3d(model_name, summary_3d, step=0, logdir=logdir)


def demo_scene():
    """Write the demo_scene.py example showing rich PBR materials as a summary.
    """
    import demo_scene
    geoms = demo_scene.create_scene()
    logdir = os.path.join(BASE_LOGDIR, 'demo_scene')
    writer = tf.summary.create_file_writer(logdir)
    for geom_data in geoms:
        geom = geom_data["geometry"]
        summary_3d = {}
        for key, tensor in geom.vertex.items():
            summary_3d["vertex_" + key] = tensor
        for key, tensor in geom.triangle.items():
            summary_3d["triangle_" + key] = tensor
        if geom.has_valid_material():
            summary_3d["material_name"] = geom.material.material_name
            for key, value in geom.material.scalar_properties.items():
                summary_3d["material_scalar_" + key] = value
            for key, value in geom.material.vector_properties.items():
                summary_3d["material_vector_" + key] = value
            for key, value in geom.material.texture_maps.items():
                summary_3d["material_texture_map_" + key] = value
        with writer.as_default():
            summary.add_3d(geom_data["name"], summary_3d, step=0, logdir=logdir)


if __name__ == "__main__":

    examples = ('small_scale', 'large_scale', 'property_reference',
                'with_material', 'demo_scene')
    selected = tuple(eg for eg in sys.argv[1:] if eg in examples)
    if len(selected) == 0:
        print(f'Usage: python {__file__} EXAMPLE...')
        print(f'  where EXAMPLE are from {examples}')
        selected = ('property_reference', 'with_material')

    for eg in selected:
        locals()[eg]()

    print(f"Run 'tensorboard --logdir {BASE_LOGDIR}' to visualize the 3D "
          "summary.")

text3d.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import open3d as o3d
import open3d.visualization.gui as gui
import open3d.visualization.rendering as rendering


def make_point_cloud(npts, center, radius):
    pts = np.random.uniform(-radius, radius, size=[npts, 3]) + center
    cloud = o3d.geometry.PointCloud()
    cloud.points = o3d.utility.Vector3dVector(pts)
    colors = np.random.uniform(0.0, 1.0, size=[npts, 3])
    cloud.colors = o3d.utility.Vector3dVector(colors)
    return cloud


def high_level():
    app = gui.Application.instance
    app.initialize()

    points = make_point_cloud(100, (0, 0, 0), 1.0)

    vis = o3d.visualization.O3DVisualizer("Open3D - 3D Text", 1024, 768)
    vis.show_settings = True
    vis.add_geometry("Points", points)
    for idx in range(0, len(points.points)):
        vis.add_3d_label(points.points[idx], "{}".format(idx))
    vis.reset_camera_to_default()

    app.add_window(vis)
    app.run()


def low_level():
    app = gui.Application.instance
    app.initialize()

    points = make_point_cloud(100, (0, 0, 0), 1.0)

    w = app.create_window("Open3D - 3D Text", 1024, 768)
    widget3d = gui.SceneWidget()
    widget3d.scene = rendering.Open3DScene(w.renderer)
    mat = rendering.MaterialRecord()
    mat.shader = "defaultUnlit"
    mat.point_size = 5 * w.scaling
    widget3d.scene.add_geometry("Points", points, mat)
    for idx in range(0, len(points.points)):
        l = widget3d.add_3d_label(points.points[idx], "{}".format(idx))
        l.color = gui.Color(points.colors[idx][0], points.colors[idx][1],
                            points.colors[idx][2])
        l.scale = np.random.uniform(0.5, 3.0)
    bbox = widget3d.scene.bounding_box
    widget3d.setup_camera(60.0, bbox, bbox.get_center())
    w.add_child(widget3d)

    app.run()


if __name__ == "__main__":
    high_level()
    low_level()

textured_mesh.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import sys
import os
import open3d as o3d


def main():
    if len(sys.argv) < 2:
        print("""Usage: textured-mesh.py [model directory]
    This example will load [model directory].obj plus any of albedo, normal,
    ao, metallic and roughness textures present. The textures should be named
    albedo.png, normal.png, ao.png, metallic.png and roughness.png
    respectively.""")
        sys.exit()

    model_dir = os.path.normpath(os.path.realpath(sys.argv[1]))
    model_name = os.path.join(model_dir, os.path.basename(model_dir) + ".obj")
    mesh = o3d.t.geometry.TriangleMesh.from_legacy(
        o3d.io.read_triangle_mesh(model_name))
    material = mesh.material
    material.material_name = "defaultLit"

    names_to_o3dprop = {"ao": "ambient_occlusion"}
    for texture in ("albedo", "normal", "ao", "metallic", "roughness"):
        texture_file = os.path.join(model_dir, texture + ".png")
        if os.path.exists(texture_file):
            texture = names_to_o3dprop.get(texture, texture)
            material.texture_maps[texture] = o3d.t.io.read_image(texture_file)
    if "metallic" in material.texture_maps:
        material.scalar_properties["metallic"] = 1.0

    o3d.visualization.draw(mesh, title=model_name)


if __name__ == "__main__":
    main()

textured_model.py

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import sys
import os
import open3d as o3d


def main():
    if len(sys.argv) < 2:
        print("""Usage: texture-model.py [model directory]
    This example will load [model directory].obj plus any of albedo, normal,
    ao, metallic and roughness textures present.""")
        sys.exit()

    model_dir = sys.argv[1]
    model_name = os.path.join(model_dir, os.path.basename(model_dir) + ".obj")
    model = o3d.io.read_triangle_mesh(model_name)
    material = o3d.visualization.rendering.MaterialRecord()
    material.shader = "defaultLit"

    albedo_name = os.path.join(model_dir, "albedo.png")
    normal_name = os.path.join(model_dir, "normal.png")
    ao_name = os.path.join(model_dir, "ao.png")
    metallic_name = os.path.join(model_dir, "metallic.png")
    roughness_name = os.path.join(model_dir, "roughness.png")
    if os.path.exists(albedo_name):
        material.albedo_img = o3d.io.read_image(albedo_name)
    if os.path.exists(normal_name):
        material.normal_img = o3d.io.read_image(normal_name)
    if os.path.exists(ao_name):
        material.ao_img = o3d.io.read_image(ao_name)
    if os.path.exists(metallic_name):
        material.base_metallic = 1.0
        material.metallic_img = o3d.io.read_image(metallic_name)
    if os.path.exists(roughness_name):
        material.roughness_img = o3d.io.read_image(roughness_name)

    o3d.visualization.draw([{
        "name": "cube",
        "geometry": model,
        "material": material
    }])


if __name__ == "__main__":
    main()

to_mitsuba.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
import open3d as o3d
import mitsuba as mi


def render_mesh(mesh, mesh_center):
    scene = mi.load_dict({
        'type': 'scene',
        'integrator': {
            'type': 'path'
        },
        'light': {
            'type': 'constant',
            'radiance': {
                'type': 'rgb',
                'value': 1.0
            }
        },
        'sensor': {
            'type':
                'perspective',
            'focal_length':
                '50mm',
            'to_world':
                mi.ScalarTransform4f.look_at(origin=[0, 0, 5],
                                             target=mesh_center,
                                             up=[0, 1, 0]),
            'thefilm': {
                'type': 'hdrfilm',
                'width': 1024,
                'height': 768,
            },
            'thesampler': {
                'type': 'multijitter',
                'sample_count': 64,
            },
        },
        'themesh': mesh,
    })

    img = mi.render(scene, spp=256)
    return img


# Default to LLVM variant which should be available on all
# platforms. If you have a system with a CUDA device then comment out LLVM
# variant and uncomment cuda variant
mi.set_variant('llvm_ad_rgb')
# mi.set_variant('cuda_ad_rgb')

# Load mesh and maps using Open3D
dataset = o3d.data.MonkeyModel()
mesh = o3d.t.io.read_triangle_mesh(dataset.path)
mesh_center = mesh.get_axis_aligned_bounding_box().get_center()
mesh.material.set_default_properties()
mesh.material.material_name = 'defaultLit'
mesh.material.scalar_properties['metallic'] = 1.0
mesh.material.texture_maps['albedo'] = o3d.t.io.read_image(
    dataset.path_map['albedo'])
mesh.material.texture_maps['roughness'] = o3d.t.io.read_image(
    dataset.path_map['roughness'])
mesh.material.texture_maps['metallic'] = o3d.t.io.read_image(
    dataset.path_map['metallic'])

print('Render mesh with material converted to Mitsuba principled BSDF')
mi_mesh = mesh.to_mitsuba('monkey')
img = render_mesh(mi_mesh, mesh_center.numpy())
mi.Bitmap(img).write('test.exr')

print('Rendering mesh with Mitsuba smooth plastic BSDF')
bsdf_smooth_plastic = mi.load_dict({
    'type': 'plastic',
    'diffuse_reflectance': {
        'type': 'rgb',
        'value': [0.1, 0.27, 0.36]
    },
    'int_ior': 1.9
})
mi_mesh = mesh.to_mitsuba('monkey', bsdf=bsdf_smooth_plastic)
img = render_mesh(mi_mesh, mesh_center.numpy())
mi.Bitmap(img).write('test2.exr')

# Render with Open3D
o3d.visualization.draw(mesh)

video.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import open3d as o3d
import open3d.visualization.gui as gui
import open3d.visualization.rendering as rendering
import time
import threading


def rescale_greyscale(img):
    data = np.asarray(img)
    assert (len(data.shape) == 2)  # requires 1 channel image
    dataFloat = data.astype(np.float64)
    max_val = dataFloat.max()
    # We don't currently support 16-bit images, so convert to 8-bit
    dataFloat *= 255.0 / max_val
    data8 = dataFloat.astype(np.uint8)
    return o3d.geometry.Image(data8)


class VideoWindow:

    def __init__(self):
        self.rgb_images = []
        rgbd_data = o3d.data.SampleRedwoodRGBDImages()
        for path in rgbd_data.color_paths:
            img = o3d.io.read_image(path)
            self.rgb_images.append(img)
        self.depth_images = []
        for path in rgbd_data.depth_paths:
            img = o3d.io.read_image(path)
            # The images are pretty dark, so rescale them so that it is
            # obvious that this is a depth image, for the sake of the example
            img = rescale_greyscale(img)
            self.depth_images.append(img)
        assert (len(self.rgb_images) == len(self.depth_images))

        self.window = gui.Application.instance.create_window(
            "Open3D - Video Example", 1000, 500)
        self.window.set_on_layout(self._on_layout)
        self.window.set_on_close(self._on_close)

        self.widget3d = gui.SceneWidget()
        self.widget3d.scene = rendering.Open3DScene(self.window.renderer)
        self.window.add_child(self.widget3d)

        lit = rendering.MaterialRecord()
        lit.shader = "defaultLit"
        tet = o3d.geometry.TriangleMesh.create_tetrahedron()
        tet.compute_vertex_normals()
        tet.paint_uniform_color([0.5, 0.75, 1.0])
        self.widget3d.scene.add_geometry("tetrahedron", tet, lit)
        bounds = self.widget3d.scene.bounding_box
        self.widget3d.setup_camera(60.0, bounds, bounds.get_center())
        self.widget3d.scene.show_axes(True)

        em = self.window.theme.font_size
        margin = 0.5 * em
        self.panel = gui.Vert(0.5 * em, gui.Margins(margin))
        self.panel.add_child(gui.Label("Color image"))
        self.rgb_widget = gui.ImageWidget(self.rgb_images[0])
        self.panel.add_child(self.rgb_widget)
        self.panel.add_child(gui.Label("Depth image (normalized)"))
        self.depth_widget = gui.ImageWidget(self.depth_images[0])
        self.panel.add_child(self.depth_widget)
        self.window.add_child(self.panel)

        self.is_done = False
        threading.Thread(target=self._update_thread).start()

    def _on_layout(self, layout_context):
        contentRect = self.window.content_rect
        panel_width = 15 * layout_context.theme.font_size  # 15 ems wide
        self.widget3d.frame = gui.Rect(contentRect.x, contentRect.y,
                                       contentRect.width - panel_width,
                                       contentRect.height)
        self.panel.frame = gui.Rect(self.widget3d.frame.get_right(),
                                    contentRect.y, panel_width,
                                    contentRect.height)

    def _on_close(self):
        self.is_done = True
        return True  # False would cancel the close

    def _update_thread(self):
        # This is NOT the UI thread, need to call post_to_main_thread() to update
        # the scene or any part of the UI.
        idx = 0
        while not self.is_done:
            time.sleep(0.100)

            # Get the next frame, for instance, reading a frame from the camera.
            rgb_frame = self.rgb_images[idx]
            depth_frame = self.depth_images[idx]
            idx += 1
            if idx >= len(self.rgb_images):
                idx = 0

            # Update the images. This must be done on the UI thread.
            def update():
                self.rgb_widget.update_image(rgb_frame)
                self.depth_widget.update_image(depth_frame)
                self.widget3d.scene.set_background([1, 1, 1, 1], rgb_frame)

            if not self.is_done:
                gui.Application.instance.post_to_main_thread(
                    self.window, update)


def main():
    app = o3d.visualization.gui.Application.instance
    app.initialize()

    win = VideoWindow()

    app.run()


if __name__ == "__main__":
    main()

vis_gui.py

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
import glob
import numpy as np
import open3d as o3d
import open3d.visualization.gui as gui
import open3d.visualization.rendering as rendering
import os
import platform
import sys

isMacOS = (platform.system() == "Darwin")


class Settings:
    UNLIT = "defaultUnlit"
    LIT = "defaultLit"
    NORMALS = "normals"
    DEPTH = "depth"

    DEFAULT_PROFILE_NAME = "Bright day with sun at +Y [default]"
    POINT_CLOUD_PROFILE_NAME = "Cloudy day (no direct sun)"
    CUSTOM_PROFILE_NAME = "Custom"
    LIGHTING_PROFILES = {
        DEFAULT_PROFILE_NAME: {
            "ibl_intensity": 45000,
            "sun_intensity": 45000,
            "sun_dir": [0.577, -0.577, -0.577],
            # "ibl_rotation":
            "use_ibl": True,
            "use_sun": True,
        },
        "Bright day with sun at -Y": {
            "ibl_intensity": 45000,
            "sun_intensity": 45000,
            "sun_dir": [0.577, 0.577, 0.577],
            # "ibl_rotation":
            "use_ibl": True,
            "use_sun": True,
        },
        "Bright day with sun at +Z": {
            "ibl_intensity": 45000,
            "sun_intensity": 45000,
            "sun_dir": [0.577, 0.577, -0.577],
            # "ibl_rotation":
            "use_ibl": True,
            "use_sun": True,
        },
        "Less Bright day with sun at +Y": {
            "ibl_intensity": 35000,
            "sun_intensity": 50000,
            "sun_dir": [0.577, -0.577, -0.577],
            # "ibl_rotation":
            "use_ibl": True,
            "use_sun": True,
        },
        "Less Bright day with sun at -Y": {
            "ibl_intensity": 35000,
            "sun_intensity": 50000,
            "sun_dir": [0.577, 0.577, 0.577],
            # "ibl_rotation":
            "use_ibl": True,
            "use_sun": True,
        },
        "Less Bright day with sun at +Z": {
            "ibl_intensity": 35000,
            "sun_intensity": 50000,
            "sun_dir": [0.577, 0.577, -0.577],
            # "ibl_rotation":
            "use_ibl": True,
            "use_sun": True,
        },
        POINT_CLOUD_PROFILE_NAME: {
            "ibl_intensity": 60000,
            "sun_intensity": 50000,
            "use_ibl": True,
            "use_sun": False,
            # "ibl_rotation":
        },
    }

    DEFAULT_MATERIAL_NAME = "Polished ceramic [default]"
    PREFAB = {
        DEFAULT_MATERIAL_NAME: {
            "metallic": 0.0,
            "roughness": 0.7,
            "reflectance": 0.5,
            "clearcoat": 0.2,
            "clearcoat_roughness": 0.2,
            "anisotropy": 0.0
        },
        "Metal (rougher)": {
            "metallic": 1.0,
            "roughness": 0.5,
            "reflectance": 0.9,
            "clearcoat": 0.0,
            "clearcoat_roughness": 0.0,
            "anisotropy": 0.0
        },
        "Metal (smoother)": {
            "metallic": 1.0,
            "roughness": 0.3,
            "reflectance": 0.9,
            "clearcoat": 0.0,
            "clearcoat_roughness": 0.0,
            "anisotropy": 0.0
        },
        "Plastic": {
            "metallic": 0.0,
            "roughness": 0.5,
            "reflectance": 0.5,
            "clearcoat": 0.5,
            "clearcoat_roughness": 0.2,
            "anisotropy": 0.0
        },
        "Glazed ceramic": {
            "metallic": 0.0,
            "roughness": 0.5,
            "reflectance": 0.9,
            "clearcoat": 1.0,
            "clearcoat_roughness": 0.1,
            "anisotropy": 0.0
        },
        "Clay": {
            "metallic": 0.0,
            "roughness": 1.0,
            "reflectance": 0.5,
            "clearcoat": 0.1,
            "clearcoat_roughness": 0.287,
            "anisotropy": 0.0
        },
    }

    def __init__(self):
        self.mouse_model = gui.SceneWidget.Controls.ROTATE_CAMERA
        self.bg_color = gui.Color(1, 1, 1)
        self.show_skybox = False
        self.show_axes = False
        self.use_ibl = True
        self.use_sun = True
        self.new_ibl_name = None  # clear to None after loading
        self.ibl_intensity = 45000
        self.sun_intensity = 45000
        self.sun_dir = [0.577, -0.577, -0.577]
        self.sun_color = gui.Color(1, 1, 1)

        self.apply_material = True  # clear to False after processing
        self._materials = {
            Settings.LIT: rendering.MaterialRecord(),
            Settings.UNLIT: rendering.MaterialRecord(),
            Settings.NORMALS: rendering.MaterialRecord(),
            Settings.DEPTH: rendering.MaterialRecord()
        }
        self._materials[Settings.LIT].base_color = [0.9, 0.9, 0.9, 1.0]
        self._materials[Settings.LIT].shader = Settings.LIT
        self._materials[Settings.UNLIT].base_color = [0.9, 0.9, 0.9, 1.0]
        self._materials[Settings.UNLIT].shader = Settings.UNLIT
        self._materials[Settings.NORMALS].shader = Settings.NORMALS
        self._materials[Settings.DEPTH].shader = Settings.DEPTH

        # Conveniently, assigning from self._materials[...] assigns a reference,
        # not a copy, so if we change the property of a material, then switch
        # to another one, then come back, the old setting will still be there.
        self.material = self._materials[Settings.LIT]

    def set_material(self, name):
        self.material = self._materials[name]
        self.apply_material = True

    def apply_material_prefab(self, name):
        assert (self.material.shader == Settings.LIT)
        prefab = Settings.PREFAB[name]
        for key, val in prefab.items():
            setattr(self.material, "base_" + key, val)

    def apply_lighting_profile(self, name):
        profile = Settings.LIGHTING_PROFILES[name]
        for key, val in profile.items():
            setattr(self, key, val)


class AppWindow:
    MENU_OPEN = 1
    MENU_EXPORT = 2
    MENU_QUIT = 3
    MENU_SHOW_SETTINGS = 11
    MENU_ABOUT = 21

    DEFAULT_IBL = "default"

    MATERIAL_NAMES = ["Lit", "Unlit", "Normals", "Depth"]
    MATERIAL_SHADERS = [
        Settings.LIT, Settings.UNLIT, Settings.NORMALS, Settings.DEPTH
    ]

    def __init__(self, width, height):
        self.settings = Settings()
        resource_path = gui.Application.instance.resource_path
        self.settings.new_ibl_name = resource_path + "/" + AppWindow.DEFAULT_IBL

        self.window = gui.Application.instance.create_window(
            "Open3D", width, height)
        w = self.window  # to make the code more concise

        # 3D widget
        self._scene = gui.SceneWidget()
        self._scene.scene = rendering.Open3DScene(w.renderer)
        self._scene.set_on_sun_direction_changed(self._on_sun_dir)

        # ---- Settings panel ----
        # Rather than specifying sizes in pixels, which may vary in size based
        # on the monitor, especially on macOS which has 220 dpi monitors, use
        # the em-size. This way sizings will be proportional to the font size,
        # which will create a more visually consistent size across platforms.
        em = w.theme.font_size
        separation_height = int(round(0.5 * em))

        # Widgets are laid out in layouts: gui.Horiz, gui.Vert,
        # gui.CollapsableVert, and gui.VGrid. By nesting the layouts we can
        # achieve complex designs. Usually we use a vertical layout as the
        # topmost widget, since widgets tend to be organized from top to bottom.
        # Within that, we usually have a series of horizontal layouts for each
        # row. All layouts take a spacing parameter, which is the spacing
        # between items in the widget, and a margins parameter, which specifies
        # the spacing of the left, top, right, bottom margins. (This acts like
        # the 'padding' property in CSS.)
        self._settings_panel = gui.Vert(
            0, gui.Margins(0.25 * em, 0.25 * em, 0.25 * em, 0.25 * em))

        # Create a collapsible vertical widget, which takes up enough vertical
        # space for all its children when open, but only enough for text when
        # closed. This is useful for property pages, so the user can hide sets
        # of properties they rarely use.
        view_ctrls = gui.CollapsableVert("View controls", 0.25 * em,
                                         gui.Margins(em, 0, 0, 0))

        self._arcball_button = gui.Button("Arcball")
        self._arcball_button.horizontal_padding_em = 0.5
        self._arcball_button.vertical_padding_em = 0
        self._arcball_button.set_on_clicked(self._set_mouse_mode_rotate)
        self._fly_button = gui.Button("Fly")
        self._fly_button.horizontal_padding_em = 0.5
        self._fly_button.vertical_padding_em = 0
        self._fly_button.set_on_clicked(self._set_mouse_mode_fly)
        self._model_button = gui.Button("Model")
        self._model_button.horizontal_padding_em = 0.5
        self._model_button.vertical_padding_em = 0
        self._model_button.set_on_clicked(self._set_mouse_mode_model)
        self._sun_button = gui.Button("Sun")
        self._sun_button.horizontal_padding_em = 0.5
        self._sun_button.vertical_padding_em = 0
        self._sun_button.set_on_clicked(self._set_mouse_mode_sun)
        self._ibl_button = gui.Button("Environment")
        self._ibl_button.horizontal_padding_em = 0.5
        self._ibl_button.vertical_padding_em = 0
        self._ibl_button.set_on_clicked(self._set_mouse_mode_ibl)
        view_ctrls.add_child(gui.Label("Mouse controls"))
        # We want two rows of buttons, so make two horizontal layouts. We also
        # want the buttons centered, which we can do be putting a stretch item
        # as the first and last item. Stretch items take up as much space as
        # possible, and since there are two, they will each take half the extra
        # space, thus centering the buttons.
        h = gui.Horiz(0.25 * em)  # row 1
        h.add_stretch()
        h.add_child(self._arcball_button)
        h.add_child(self._fly_button)
        h.add_child(self._model_button)
        h.add_stretch()
        view_ctrls.add_child(h)
        h = gui.Horiz(0.25 * em)  # row 2
        h.add_stretch()
        h.add_child(self._sun_button)
        h.add_child(self._ibl_button)
        h.add_stretch()
        view_ctrls.add_child(h)

        self._show_skybox = gui.Checkbox("Show skymap")
        self._show_skybox.set_on_checked(self._on_show_skybox)
        view_ctrls.add_fixed(separation_height)
        view_ctrls.add_child(self._show_skybox)

        self._bg_color = gui.ColorEdit()
        self._bg_color.set_on_value_changed(self._on_bg_color)

        grid = gui.VGrid(2, 0.25 * em)
        grid.add_child(gui.Label("BG Color"))
        grid.add_child(self._bg_color)
        view_ctrls.add_child(grid)

        self._show_axes = gui.Checkbox("Show axes")
        self._show_axes.set_on_checked(self._on_show_axes)
        view_ctrls.add_fixed(separation_height)
        view_ctrls.add_child(self._show_axes)

        self._profiles = gui.Combobox()
        for name in sorted(Settings.LIGHTING_PROFILES.keys()):
            self._profiles.add_item(name)
        self._profiles.add_item(Settings.CUSTOM_PROFILE_NAME)
        self._profiles.set_on_selection_changed(self._on_lighting_profile)
        view_ctrls.add_fixed(separation_height)
        view_ctrls.add_child(gui.Label("Lighting profiles"))
        view_ctrls.add_child(self._profiles)
        self._settings_panel.add_fixed(separation_height)
        self._settings_panel.add_child(view_ctrls)

        advanced = gui.CollapsableVert("Advanced lighting", 0,
                                       gui.Margins(em, 0, 0, 0))
        advanced.set_is_open(False)

        self._use_ibl = gui.Checkbox("HDR map")
        self._use_ibl.set_on_checked(self._on_use_ibl)
        self._use_sun = gui.Checkbox("Sun")
        self._use_sun.set_on_checked(self._on_use_sun)
        advanced.add_child(gui.Label("Light sources"))
        h = gui.Horiz(em)
        h.add_child(self._use_ibl)
        h.add_child(self._use_sun)
        advanced.add_child(h)

        self._ibl_map = gui.Combobox()
        for ibl in glob.glob(gui.Application.instance.resource_path +
                             "/*_ibl.ktx"):

            self._ibl_map.add_item(os.path.basename(ibl[:-8]))
        self._ibl_map.selected_text = AppWindow.DEFAULT_IBL
        self._ibl_map.set_on_selection_changed(self._on_new_ibl)
        self._ibl_intensity = gui.Slider(gui.Slider.INT)
        self._ibl_intensity.set_limits(0, 200000)
        self._ibl_intensity.set_on_value_changed(self._on_ibl_intensity)
        grid = gui.VGrid(2, 0.25 * em)
        grid.add_child(gui.Label("HDR map"))
        grid.add_child(self._ibl_map)
        grid.add_child(gui.Label("Intensity"))
        grid.add_child(self._ibl_intensity)
        advanced.add_fixed(separation_height)
        advanced.add_child(gui.Label("Environment"))
        advanced.add_child(grid)

        self._sun_intensity = gui.Slider(gui.Slider.INT)
        self._sun_intensity.set_limits(0, 200000)
        self._sun_intensity.set_on_value_changed(self._on_sun_intensity)
        self._sun_dir = gui.VectorEdit()
        self._sun_dir.set_on_value_changed(self._on_sun_dir)
        self._sun_color = gui.ColorEdit()
        self._sun_color.set_on_value_changed(self._on_sun_color)
        grid = gui.VGrid(2, 0.25 * em)
        grid.add_child(gui.Label("Intensity"))
        grid.add_child(self._sun_intensity)
        grid.add_child(gui.Label("Direction"))
        grid.add_child(self._sun_dir)
        grid.add_child(gui.Label("Color"))
        grid.add_child(self._sun_color)
        advanced.add_fixed(separation_height)
        advanced.add_child(gui.Label("Sun (Directional light)"))
        advanced.add_child(grid)

        self._settings_panel.add_fixed(separation_height)
        self._settings_panel.add_child(advanced)

        material_settings = gui.CollapsableVert("Material settings", 0,
                                                gui.Margins(em, 0, 0, 0))

        self._shader = gui.Combobox()
        self._shader.add_item(AppWindow.MATERIAL_NAMES[0])
        self._shader.add_item(AppWindow.MATERIAL_NAMES[1])
        self._shader.add_item(AppWindow.MATERIAL_NAMES[2])
        self._shader.add_item(AppWindow.MATERIAL_NAMES[3])
        self._shader.set_on_selection_changed(self._on_shader)
        self._material_prefab = gui.Combobox()
        for prefab_name in sorted(Settings.PREFAB.keys()):
            self._material_prefab.add_item(prefab_name)
        self._material_prefab.selected_text = Settings.DEFAULT_MATERIAL_NAME
        self._material_prefab.set_on_selection_changed(self._on_material_prefab)
        self._material_color = gui.ColorEdit()
        self._material_color.set_on_value_changed(self._on_material_color)
        self._point_size = gui.Slider(gui.Slider.INT)
        self._point_size.set_limits(1, 10)
        self._point_size.set_on_value_changed(self._on_point_size)

        grid = gui.VGrid(2, 0.25 * em)
        grid.add_child(gui.Label("Type"))
        grid.add_child(self._shader)
        grid.add_child(gui.Label("Material"))
        grid.add_child(self._material_prefab)
        grid.add_child(gui.Label("Color"))
        grid.add_child(self._material_color)
        grid.add_child(gui.Label("Point size"))
        grid.add_child(self._point_size)
        material_settings.add_child(grid)

        self._settings_panel.add_fixed(separation_height)
        self._settings_panel.add_child(material_settings)
        # ----

        # Normally our user interface can be children of all one layout (usually
        # a vertical layout), which is then the only child of the window. In our
        # case we want the scene to take up all the space and the settings panel
        # to go above it. We can do this custom layout by providing an on_layout
        # callback. The on_layout callback should set the frame
        # (position + size) of every child correctly. After the callback is
        # done the window will layout the grandchildren.
        w.set_on_layout(self._on_layout)
        w.add_child(self._scene)
        w.add_child(self._settings_panel)

        # ---- Menu ----
        # The menu is global (because the macOS menu is global), so only create
        # it once, no matter how many windows are created
        if gui.Application.instance.menubar is None:
            if isMacOS:
                app_menu = gui.Menu()
                app_menu.add_item("About", AppWindow.MENU_ABOUT)
                app_menu.add_separator()
                app_menu.add_item("Quit", AppWindow.MENU_QUIT)
            file_menu = gui.Menu()
            file_menu.add_item("Open...", AppWindow.MENU_OPEN)
            file_menu.add_item("Export Current Image...", AppWindow.MENU_EXPORT)
            if not isMacOS:
                file_menu.add_separator()
                file_menu.add_item("Quit", AppWindow.MENU_QUIT)
            settings_menu = gui.Menu()
            settings_menu.add_item("Lighting & Materials",
                                   AppWindow.MENU_SHOW_SETTINGS)
            settings_menu.set_checked(AppWindow.MENU_SHOW_SETTINGS, True)
            help_menu = gui.Menu()
            help_menu.add_item("About", AppWindow.MENU_ABOUT)

            menu = gui.Menu()
            if isMacOS:
                # macOS will name the first menu item for the running application
                # (in our case, probably "Python"), regardless of what we call
                # it. This is the application menu, and it is where the
                # About..., Preferences..., and Quit menu items typically go.
                menu.add_menu("Example", app_menu)
                menu.add_menu("File", file_menu)
                menu.add_menu("Settings", settings_menu)
                # Don't include help menu unless it has something more than
                # About...
            else:
                menu.add_menu("File", file_menu)
                menu.add_menu("Settings", settings_menu)
                menu.add_menu("Help", help_menu)
            gui.Application.instance.menubar = menu

        # The menubar is global, but we need to connect the menu items to the
        # window, so that the window can call the appropriate function when the
        # menu item is activated.
        w.set_on_menu_item_activated(AppWindow.MENU_OPEN, self._on_menu_open)
        w.set_on_menu_item_activated(AppWindow.MENU_EXPORT,
                                     self._on_menu_export)
        w.set_on_menu_item_activated(AppWindow.MENU_QUIT, self._on_menu_quit)
        w.set_on_menu_item_activated(AppWindow.MENU_SHOW_SETTINGS,
                                     self._on_menu_toggle_settings_panel)
        w.set_on_menu_item_activated(AppWindow.MENU_ABOUT, self._on_menu_about)
        # ----

        self._apply_settings()

    def _apply_settings(self):
        bg_color = [
            self.settings.bg_color.red, self.settings.bg_color.green,
            self.settings.bg_color.blue, self.settings.bg_color.alpha
        ]
        self._scene.scene.set_background(bg_color)
        self._scene.scene.show_skybox(self.settings.show_skybox)
        self._scene.scene.show_axes(self.settings.show_axes)
        if self.settings.new_ibl_name is not None:
            self._scene.scene.scene.set_indirect_light(
                self.settings.new_ibl_name)
            # Clear new_ibl_name, so we don't keep reloading this image every
            # time the settings are applied.
            self.settings.new_ibl_name = None
        self._scene.scene.scene.enable_indirect_light(self.settings.use_ibl)
        self._scene.scene.scene.set_indirect_light_intensity(
            self.settings.ibl_intensity)
        sun_color = [
            self.settings.sun_color.red, self.settings.sun_color.green,
            self.settings.sun_color.blue
        ]
        self._scene.scene.scene.set_sun_light(self.settings.sun_dir, sun_color,
                                              self.settings.sun_intensity)
        self._scene.scene.scene.enable_sun_light(self.settings.use_sun)

        if self.settings.apply_material:
            self._scene.scene.update_material(self.settings.material)
            self.settings.apply_material = False

        self._bg_color.color_value = self.settings.bg_color
        self._show_skybox.checked = self.settings.show_skybox
        self._show_axes.checked = self.settings.show_axes
        self._use_ibl.checked = self.settings.use_ibl
        self._use_sun.checked = self.settings.use_sun
        self._ibl_intensity.int_value = self.settings.ibl_intensity
        self._sun_intensity.int_value = self.settings.sun_intensity
        self._sun_dir.vector_value = self.settings.sun_dir
        self._sun_color.color_value = self.settings.sun_color
        self._material_prefab.enabled = (
            self.settings.material.shader == Settings.LIT)
        c = gui.Color(self.settings.material.base_color[0],
                      self.settings.material.base_color[1],
                      self.settings.material.base_color[2],
                      self.settings.material.base_color[3])
        self._material_color.color_value = c
        self._point_size.double_value = self.settings.material.point_size

    def _on_layout(self, layout_context):
        # The on_layout callback should set the frame (position + size) of every
        # child correctly. After the callback is done the window will layout
        # the grandchildren.
        r = self.window.content_rect
        self._scene.frame = r
        width = 17 * layout_context.theme.font_size
        height = min(
            r.height,
            self._settings_panel.calc_preferred_size(
                layout_context, gui.Widget.Constraints()).height)
        self._settings_panel.frame = gui.Rect(r.get_right() - width, r.y, width,
                                              height)

    def _set_mouse_mode_rotate(self):
        self._scene.set_view_controls(gui.SceneWidget.Controls.ROTATE_CAMERA)

    def _set_mouse_mode_fly(self):
        self._scene.set_view_controls(gui.SceneWidget.Controls.FLY)

    def _set_mouse_mode_sun(self):
        self._scene.set_view_controls(gui.SceneWidget.Controls.ROTATE_SUN)

    def _set_mouse_mode_ibl(self):
        self._scene.set_view_controls(gui.SceneWidget.Controls.ROTATE_IBL)

    def _set_mouse_mode_model(self):
        self._scene.set_view_controls(gui.SceneWidget.Controls.ROTATE_MODEL)

    def _on_bg_color(self, new_color):
        self.settings.bg_color = new_color
        self._apply_settings()

    def _on_show_skybox(self, show):
        self.settings.show_skybox = show
        self._apply_settings()

    def _on_show_axes(self, show):
        self.settings.show_axes = show
        self._apply_settings()

    def _on_use_ibl(self, use):
        self.settings.use_ibl = use
        self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
        self._apply_settings()

    def _on_use_sun(self, use):
        self.settings.use_sun = use
        self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
        self._apply_settings()

    def _on_lighting_profile(self, name, index):
        if name != Settings.CUSTOM_PROFILE_NAME:
            self.settings.apply_lighting_profile(name)
            self._apply_settings()

    def _on_new_ibl(self, name, index):
        self.settings.new_ibl_name = gui.Application.instance.resource_path + "/" + name
        self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
        self._apply_settings()

    def _on_ibl_intensity(self, intensity):
        self.settings.ibl_intensity = int(intensity)
        self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
        self._apply_settings()

    def _on_sun_intensity(self, intensity):
        self.settings.sun_intensity = int(intensity)
        self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
        self._apply_settings()

    def _on_sun_dir(self, sun_dir):
        self.settings.sun_dir = sun_dir
        self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
        self._apply_settings()

    def _on_sun_color(self, color):
        self.settings.sun_color = color
        self._apply_settings()

    def _on_shader(self, name, index):
        self.settings.set_material(AppWindow.MATERIAL_SHADERS[index])
        self._apply_settings()

    def _on_material_prefab(self, name, index):
        self.settings.apply_material_prefab(name)
        self.settings.apply_material = True
        self._apply_settings()

    def _on_material_color(self, color):
        self.settings.material.base_color = [
            color.red, color.green, color.blue, color.alpha
        ]
        self.settings.apply_material = True
        self._apply_settings()

    def _on_point_size(self, size):
        self.settings.material.point_size = int(size)
        self.settings.apply_material = True
        self._apply_settings()

    def _on_menu_open(self):
        dlg = gui.FileDialog(gui.FileDialog.OPEN, "Choose file to load",
                             self.window.theme)
        dlg.add_filter(
            ".ply .stl .fbx .obj .off .gltf .glb",
            "Triangle mesh files (.ply, .stl, .fbx, .obj, .off, "
            ".gltf, .glb)")
        dlg.add_filter(
            ".xyz .xyzn .xyzrgb .ply .pcd .pts",
            "Point cloud files (.xyz, .xyzn, .xyzrgb, .ply, "
            ".pcd, .pts)")
        dlg.add_filter(".ply", "Polygon files (.ply)")
        dlg.add_filter(".stl", "Stereolithography files (.stl)")
        dlg.add_filter(".fbx", "Autodesk Filmbox files (.fbx)")
        dlg.add_filter(".obj", "Wavefront OBJ files (.obj)")
        dlg.add_filter(".off", "Object file format (.off)")
        dlg.add_filter(".gltf", "OpenGL transfer files (.gltf)")
        dlg.add_filter(".glb", "OpenGL binary transfer files (.glb)")
        dlg.add_filter(".xyz", "ASCII point cloud files (.xyz)")
        dlg.add_filter(".xyzn", "ASCII point cloud with normals (.xyzn)")
        dlg.add_filter(".xyzrgb",
                       "ASCII point cloud files with colors (.xyzrgb)")
        dlg.add_filter(".pcd", "Point Cloud Data files (.pcd)")
        dlg.add_filter(".pts", "3D Points files (.pts)")
        dlg.add_filter("", "All files")

        # A file dialog MUST define on_cancel and on_done functions
        dlg.set_on_cancel(self._on_file_dialog_cancel)
        dlg.set_on_done(self._on_load_dialog_done)
        self.window.show_dialog(dlg)

    def _on_file_dialog_cancel(self):
        self.window.close_dialog()

    def _on_load_dialog_done(self, filename):
        self.window.close_dialog()
        self.load(filename)

    def _on_menu_export(self):
        dlg = gui.FileDialog(gui.FileDialog.SAVE, "Choose file to save",
                             self.window.theme)
        dlg.add_filter(".png", "PNG files (.png)")
        dlg.set_on_cancel(self._on_file_dialog_cancel)
        dlg.set_on_done(self._on_export_dialog_done)
        self.window.show_dialog(dlg)

    def _on_export_dialog_done(self, filename):
        self.window.close_dialog()
        frame = self._scene.frame
        self.export_image(filename, frame.width, frame.height)

    def _on_menu_quit(self):
        gui.Application.instance.quit()

    def _on_menu_toggle_settings_panel(self):
        self._settings_panel.visible = not self._settings_panel.visible
        gui.Application.instance.menubar.set_checked(
            AppWindow.MENU_SHOW_SETTINGS, self._settings_panel.visible)

    def _on_menu_about(self):
        # Show a simple dialog. Although the Dialog is actually a widget, you can
        # treat it similar to a Window for layout and put all the widgets in a
        # layout which you make the only child of the Dialog.
        em = self.window.theme.font_size
        dlg = gui.Dialog("About")

        # Add the text
        dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
        dlg_layout.add_child(gui.Label("Open3D GUI Example"))

        # Add the Ok button. We need to define a callback function to handle
        # the click.
        ok = gui.Button("OK")
        ok.set_on_clicked(self._on_about_ok)

        # We want the Ok button to be an the right side, so we need to add
        # a stretch item to the layout, otherwise the button will be the size
        # of the entire row. A stretch item takes up as much space as it can,
        # which forces the button to be its minimum size.
        h = gui.Horiz()
        h.add_stretch()
        h.add_child(ok)
        h.add_stretch()
        dlg_layout.add_child(h)

        dlg.add_child(dlg_layout)
        self.window.show_dialog(dlg)

    def _on_about_ok(self):
        self.window.close_dialog()

    def load(self, path):
        self._scene.scene.clear_geometry()

        geometry = None
        geometry_type = o3d.io.read_file_geometry_type(path)

        mesh = None
        if geometry_type & o3d.io.CONTAINS_TRIANGLES:
            mesh = o3d.io.read_triangle_model(path)
        if mesh is None:
            print("[Info]", path, "appears to be a point cloud")
            cloud = None
            try:
                cloud = o3d.io.read_point_cloud(path)
            except Exception:
                pass
            if cloud is not None:
                print("[Info] Successfully read", path)
                if not cloud.has_normals():
                    cloud.estimate_normals()
                cloud.normalize_normals()
                geometry = cloud
            else:
                print("[WARNING] Failed to read points", path)

        if geometry is not None or mesh is not None:
            try:
                if mesh is not None:
                    # Triangle model
                    self._scene.scene.add_model("__model__", mesh)
                else:
                    # Point cloud
                    self._scene.scene.add_geometry("__model__", geometry,
                                                   self.settings.material)
                bounds = self._scene.scene.bounding_box
                self._scene.setup_camera(60, bounds, bounds.get_center())
            except Exception as e:
                print(e)

    def export_image(self, path, width, height):

        def on_image(image):
            img = image

            quality = 9  # png
            if path.endswith(".jpg"):
                quality = 100
            o3d.io.write_image(path, img, quality)

        self._scene.scene.scene.render_to_image(on_image)


def main():
    # We need to initialize the application, which finds the necessary shaders
    # for rendering and prepares the cross-platform window abstraction.
    gui.Application.instance.initialize()

    w = AppWindow(1024, 768)

    if len(sys.argv) > 1:
        path = sys.argv[1]
        if os.path.exists(path):
            w.load(path)
        else:
            w.window.show_message_box("Error",
                                      "Could not open file '" + path + "'")

    # Run the event loop. This will not return until the last window is closed.
    gui.Application.instance.run()


if __name__ == "__main__":
    main()