Visualization#
add_geometry.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d as o3d
9import open3d.visualization.gui as gui
10import open3d.visualization.rendering as rendering
11import platform
12import random
13import threading
14import time
15
16isMacOS = (platform.system() == "Darwin")
17
18
19# This example shows two methods of adding geometry to an existing scene.
20# 1) add via a UI callback (in this case a menu, but a button would be similar,
21# you would call `button.set_on_clicked(self.on_menu_sphere_)` when
22# configuring the button. See `on_menu_sphere()`.
23# 2) add asynchronously by polling from another thread. GUI functions must be
24# called from the UI thread, so use Application.post_to_main_thread().
25# See `on_menu_random()`.
26# Running the example will show a simple window with a Debug menu item with the
27# two different options. The second method will add random spheres for
28# 20 seconds, during which time you can be interacting with the scene, rotating,
29# etc.
30class SpheresApp:
31 MENU_SPHERE = 1
32 MENU_RANDOM = 2
33 MENU_QUIT = 3
34
35 def __init__(self):
36 self._id = 0
37 self.window = gui.Application.instance.create_window(
38 "Add Spheres Example", 1024, 768)
39 self.scene = gui.SceneWidget()
40 self.scene.scene = rendering.Open3DScene(self.window.renderer)
41 self.scene.scene.set_background([1, 1, 1, 1])
42 self.scene.scene.scene.set_sun_light(
43 [-1, -1, -1], # direction
44 [1, 1, 1], # color
45 100000) # intensity
46 self.scene.scene.scene.enable_sun_light(True)
47 bbox = o3d.geometry.AxisAlignedBoundingBox([-10, -10, -10],
48 [10, 10, 10])
49 self.scene.setup_camera(60, bbox, [0, 0, 0])
50
51 self.window.add_child(self.scene)
52
53 # The menu is global (because the macOS menu is global), so only create
54 # it once, no matter how many windows are created
55 if gui.Application.instance.menubar is None:
56 if isMacOS:
57 app_menu = gui.Menu()
58 app_menu.add_item("Quit", SpheresApp.MENU_QUIT)
59 debug_menu = gui.Menu()
60 debug_menu.add_item("Add Sphere", SpheresApp.MENU_SPHERE)
61 debug_menu.add_item("Add Random Spheres", SpheresApp.MENU_RANDOM)
62 if not isMacOS:
63 debug_menu.add_separator()
64 debug_menu.add_item("Quit", SpheresApp.MENU_QUIT)
65
66 menu = gui.Menu()
67 if isMacOS:
68 # macOS will name the first menu item for the running application
69 # (in our case, probably "Python"), regardless of what we call
70 # it. This is the application menu, and it is where the
71 # About..., Preferences..., and Quit menu items typically go.
72 menu.add_menu("Example", app_menu)
73 menu.add_menu("Debug", debug_menu)
74 else:
75 menu.add_menu("Debug", debug_menu)
76 gui.Application.instance.menubar = menu
77
78 # The menubar is global, but we need to connect the menu items to the
79 # window, so that the window can call the appropriate function when the
80 # menu item is activated.
81 self.window.set_on_menu_item_activated(SpheresApp.MENU_SPHERE,
82 self._on_menu_sphere)
83 self.window.set_on_menu_item_activated(SpheresApp.MENU_RANDOM,
84 self._on_menu_random)
85 self.window.set_on_menu_item_activated(SpheresApp.MENU_QUIT,
86 self._on_menu_quit)
87
88 def add_sphere(self):
89 self._id += 1
90 mat = rendering.MaterialRecord()
91 mat.base_color = [
92 random.random(),
93 random.random(),
94 random.random(), 1.0
95 ]
96 mat.shader = "defaultLit"
97 sphere = o3d.geometry.TriangleMesh.create_sphere(0.5)
98 sphere.compute_vertex_normals()
99 sphere.translate([
100 10.0 * random.uniform(-1.0, 1.0), 10.0 * random.uniform(-1.0, 1.0),
101 10.0 * random.uniform(-1.0, 1.0)
102 ])
103 self.scene.scene.add_geometry("sphere" + str(self._id), sphere, mat)
104
105 def _on_menu_sphere(self):
106 # GUI callbacks happen on the main thread, so we can do everything
107 # normally here.
108 self.add_sphere()
109
110 def _on_menu_random(self):
111 # This adds spheres asynchronously. This pattern is useful if you have
112 # data coming in from another source than user interaction.
113 def thread_main():
114 for _ in range(0, 20):
115 # We can only modify GUI objects on the main thread, so we
116 # need to post the function to call to the main thread.
117 gui.Application.instance.post_to_main_thread(
118 self.window, self.add_sphere)
119 time.sleep(1)
120
121 threading.Thread(target=thread_main).start()
122
123 def _on_menu_quit(self):
124 gui.Application.instance.quit()
125
126
127def main():
128 gui.Application.instance.initialize()
129 SpheresApp()
130 gui.Application.instance.run()
131
132
133if __name__ == "__main__":
134 main()
all_widgets.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d.visualization.gui as gui
9import os.path
10
11basedir = os.path.dirname(os.path.realpath(__file__))
12
13
14class ExampleWindow:
15 MENU_CHECKABLE = 1
16 MENU_DISABLED = 2
17 MENU_QUIT = 3
18
19 def __init__(self):
20 self.window = gui.Application.instance.create_window("Test", 400, 768)
21 # self.window = gui.Application.instance.create_window("Test", 400, 768,
22 # x=50, y=100)
23 w = self.window # for more concise code
24
25 # Rather than specifying sizes in pixels, which may vary in size based
26 # on the monitor, especially on macOS which has 220 dpi monitors, use
27 # the em-size. This way sizings will be proportional to the font size,
28 # which will create a more visually consistent size across platforms.
29 em = w.theme.font_size
30
31 # Widgets are laid out in layouts: gui.Horiz, gui.Vert,
32 # gui.CollapsableVert, and gui.VGrid. By nesting the layouts we can
33 # achieve complex designs. Usually we use a vertical layout as the
34 # topmost widget, since widgets tend to be organized from top to bottom.
35 # Within that, we usually have a series of horizontal layouts for each
36 # row.
37 layout = gui.Vert(0, gui.Margins(0.5 * em, 0.5 * em, 0.5 * em,
38 0.5 * em))
39
40 # Create the menu. The menu is global (because the macOS menu is global),
41 # so only create it once.
42 if gui.Application.instance.menubar is None:
43 menubar = gui.Menu()
44 test_menu = gui.Menu()
45 test_menu.add_item("An option", ExampleWindow.MENU_CHECKABLE)
46 test_menu.set_checked(ExampleWindow.MENU_CHECKABLE, True)
47 test_menu.add_item("Unavailable feature",
48 ExampleWindow.MENU_DISABLED)
49 test_menu.set_enabled(ExampleWindow.MENU_DISABLED, False)
50 test_menu.add_separator()
51 test_menu.add_item("Quit", ExampleWindow.MENU_QUIT)
52 # On macOS the first menu item is the application menu item and will
53 # always be the name of the application (probably "Python"),
54 # regardless of what you pass in here. The application menu is
55 # typically where About..., Preferences..., and Quit go.
56 menubar.add_menu("Test", test_menu)
57 gui.Application.instance.menubar = menubar
58
59 # Each window needs to know what to do with the menu items, so we need
60 # to tell the window how to handle menu items.
61 w.set_on_menu_item_activated(ExampleWindow.MENU_CHECKABLE,
62 self._on_menu_checkable)
63 w.set_on_menu_item_activated(ExampleWindow.MENU_QUIT,
64 self._on_menu_quit)
65
66 # Create a file-chooser widget. One part will be a text edit widget for
67 # the filename and clicking on the button will let the user choose using
68 # the file dialog.
69 self._fileedit = gui.TextEdit()
70 filedlgbutton = gui.Button("...")
71 filedlgbutton.horizontal_padding_em = 0.5
72 filedlgbutton.vertical_padding_em = 0
73 filedlgbutton.set_on_clicked(self._on_filedlg_button)
74
75 # (Create the horizontal widget for the row. This will make sure the
76 # text editor takes up as much space as it can.)
77 fileedit_layout = gui.Horiz()
78 fileedit_layout.add_child(gui.Label("Model file"))
79 fileedit_layout.add_child(self._fileedit)
80 fileedit_layout.add_fixed(0.25 * em)
81 fileedit_layout.add_child(filedlgbutton)
82 # add to the top-level (vertical) layout
83 layout.add_child(fileedit_layout)
84
85 # Create a collapsible vertical widget, which takes up enough vertical
86 # space for all its children when open, but only enough for text when
87 # closed. This is useful for property pages, so the user can hide sets
88 # of properties they rarely use. All layouts take a spacing parameter,
89 # which is the spacinging between items in the widget, and a margins
90 # parameter, which specifies the spacing of the left, top, right,
91 # bottom margins. (This acts like the 'padding' property in CSS.)
92 collapse = gui.CollapsableVert("Widgets", 0.33 * em,
93 gui.Margins(em, 0, 0, 0))
94 self._label = gui.Label("Lorem ipsum dolor")
95 self._label.text_color = gui.Color(1.0, 0.5, 0.0)
96 collapse.add_child(self._label)
97
98 # Create a checkbox. Checking or unchecking would usually be used to set
99 # a binary property, but in this case it will show a simple message box,
100 # which illustrates how to create simple dialogs.
101 cb = gui.Checkbox("Enable some really cool effect")
102 cb.set_on_checked(self._on_cb) # set the callback function
103 collapse.add_child(cb)
104
105 # Create a color editor. We will change the color of the orange label
106 # above when the color changes.
107 color = gui.ColorEdit()
108 color.color_value = self._label.text_color
109 color.set_on_value_changed(self._on_color)
110 collapse.add_child(color)
111
112 # This is a combobox, nothing fancy here, just set a simple function to
113 # handle the user selecting an item.
114 combo = gui.Combobox()
115 combo.add_item("Show point labels")
116 combo.add_item("Show point velocity")
117 combo.add_item("Show bounding boxes")
118 combo.set_on_selection_changed(self._on_combo)
119 collapse.add_child(combo)
120
121 # This is a toggle switch, which is similar to a checkbox. To my way of
122 # thinking the difference is subtle: a checkbox toggles properties
123 # (for example, purely visual changes like enabling lighting) while a
124 # toggle switch is better for changing the behavior of the app (for
125 # example, turning on processing from the camera).
126 switch = gui.ToggleSwitch("Continuously update from camera")
127 switch.set_on_clicked(self._on_switch)
128 collapse.add_child(switch)
129
130 self.logo_idx = 0
131 proxy = gui.WidgetProxy()
132
133 def switch_proxy():
134 self.logo_idx += 1
135 if self.logo_idx % 3 == 0:
136 proxy.set_widget(None)
137 elif self.logo_idx % 3 == 1:
138 # Add a simple image
139 logo = gui.ImageWidget(basedir + "/icon-32.png")
140 proxy.set_widget(logo)
141 else:
142 label = gui.Label(
143 'Open3D: A Modern Library for 3D Data Processing')
144 proxy.set_widget(label)
145 w.set_needs_layout()
146
147 logo_btn = gui.Button('Switch Logo By WidgetProxy')
148 logo_btn.vertical_padding_em = 0
149 logo_btn.background_color = gui.Color(r=0, b=0.5, g=0)
150 logo_btn.set_on_clicked(switch_proxy)
151 collapse.add_child(logo_btn)
152 collapse.add_child(proxy)
153
154 # Widget stack demo
155 self._widget_idx = 0
156 hz = gui.Horiz(spacing=5)
157 push_widget_btn = gui.Button('Push widget')
158 push_widget_btn.vertical_padding_em = 0
159 pop_widget_btn = gui.Button('Pop widget')
160 pop_widget_btn.vertical_padding_em = 0
161 stack = gui.WidgetStack()
162 stack.set_on_top(lambda w: print(f'New widget is: {w.text}'))
163 hz.add_child(gui.Label('WidgetStack '))
164 hz.add_child(push_widget_btn)
165 hz.add_child(pop_widget_btn)
166 hz.add_child(stack)
167 collapse.add_child(hz)
168
169 def push_widget():
170 self._widget_idx += 1
171 stack.push_widget(gui.Label(f'Widget {self._widget_idx}'))
172
173 push_widget_btn.set_on_clicked(push_widget)
174 pop_widget_btn.set_on_clicked(stack.pop_widget)
175
176 # Add a list of items
177 lv = gui.ListView()
178 lv.set_items(["Ground", "Trees", "Buildings", "Cars", "People", "Cats"])
179 lv.selected_index = lv.selected_index + 2 # initially is -1, so now 1
180 lv.set_max_visible_items(4)
181 lv.set_on_selection_changed(self._on_list)
182 collapse.add_child(lv)
183
184 # Add a tree view
185 tree = gui.TreeView()
186 tree.add_text_item(tree.get_root_item(), "Camera")
187 geo_id = tree.add_text_item(tree.get_root_item(), "Geometries")
188 mesh_id = tree.add_text_item(geo_id, "Mesh")
189 tree.add_text_item(mesh_id, "Triangles")
190 tree.add_text_item(mesh_id, "Albedo texture")
191 tree.add_text_item(mesh_id, "Normal map")
192 points_id = tree.add_text_item(geo_id, "Points")
193 tree.can_select_items_with_children = True
194 tree.set_on_selection_changed(self._on_tree)
195 # does not call on_selection_changed: user did not change selection
196 tree.selected_item = points_id
197 collapse.add_child(tree)
198
199 # Add two number editors, one for integers and one for floating point
200 # Number editor can clamp numbers to a range, although this is more
201 # useful for integers than for floating point.
202 intedit = gui.NumberEdit(gui.NumberEdit.INT)
203 intedit.int_value = 0
204 intedit.set_limits(1, 19) # value coerced to 1
205 intedit.int_value = intedit.int_value + 2 # value should be 3
206 doubleedit = gui.NumberEdit(gui.NumberEdit.DOUBLE)
207 numlayout = gui.Horiz()
208 numlayout.add_child(gui.Label("int"))
209 numlayout.add_child(intedit)
210 numlayout.add_fixed(em) # manual spacing (could set it in Horiz() ctor)
211 numlayout.add_child(gui.Label("double"))
212 numlayout.add_child(doubleedit)
213 collapse.add_child(numlayout)
214
215 # Create a progress bar. It ranges from 0.0 to 1.0.
216 self._progress = gui.ProgressBar()
217 self._progress.value = 0.25 # 25% complete
218 self._progress.value = self._progress.value + 0.08 # 0.25 + 0.08 = 33%
219 prog_layout = gui.Horiz(em)
220 prog_layout.add_child(gui.Label("Progress..."))
221 prog_layout.add_child(self._progress)
222 collapse.add_child(prog_layout)
223
224 # Create a slider. It acts very similar to NumberEdit except that the
225 # user moves a slider and cannot type the number.
226 slider = gui.Slider(gui.Slider.INT)
227 slider.set_limits(5, 13)
228 slider.set_on_value_changed(self._on_slider)
229 collapse.add_child(slider)
230
231 # Create a text editor. The placeholder text (if not empty) will be
232 # displayed when there is no text, as concise help, or visible tooltip.
233 tedit = gui.TextEdit()
234 tedit.placeholder_text = "Edit me some text here"
235
236 # on_text_changed fires whenever the user changes the text (but not if
237 # the text_value property is assigned to).
238 tedit.set_on_text_changed(self._on_text_changed)
239
240 # on_value_changed fires whenever the user signals that they are finished
241 # editing the text, either by pressing return or by clicking outside of
242 # the text editor, thus losing text focus.
243 tedit.set_on_value_changed(self._on_value_changed)
244 collapse.add_child(tedit)
245
246 # Create a widget for showing/editing a 3D vector
247 vedit = gui.VectorEdit()
248 vedit.vector_value = [1, 2, 3]
249 vedit.set_on_value_changed(self._on_vedit)
250 collapse.add_child(vedit)
251
252 # Create a VGrid layout. This layout specifies the number of columns
253 # (two, in this case), and will place the first child in the first
254 # column, the second in the second, the third in the first, the fourth
255 # in the second, etc.
256 # So:
257 # 2 cols 3 cols 4 cols
258 # | 1 | 2 | | 1 | 2 | 3 | | 1 | 2 | 3 | 4 |
259 # | 3 | 4 | | 4 | 5 | 6 | | 5 | 6 | 7 | 8 |
260 # | 5 | 6 | | 7 | 8 | 9 | | 9 | 10 | 11 | 12 |
261 # | ... | | ... | | ... |
262 vgrid = gui.VGrid(2)
263 vgrid.add_child(gui.Label("Trees"))
264 vgrid.add_child(gui.Label("12 items"))
265 vgrid.add_child(gui.Label("People"))
266 vgrid.add_child(gui.Label("2 (93% certainty)"))
267 vgrid.add_child(gui.Label("Cars"))
268 vgrid.add_child(gui.Label("5 (87% certainty)"))
269 collapse.add_child(vgrid)
270
271 # Create a tab control. This is really a set of N layouts on top of each
272 # other, but with only one selected.
273 tabs = gui.TabControl()
274 tab1 = gui.Vert()
275 tab1.add_child(gui.Checkbox("Enable option 1"))
276 tab1.add_child(gui.Checkbox("Enable option 2"))
277 tab1.add_child(gui.Checkbox("Enable option 3"))
278 tabs.add_tab("Options", tab1)
279 tab2 = gui.Vert()
280 tab2.add_child(gui.Label("No plugins detected"))
281 tab2.add_stretch()
282 tabs.add_tab("Plugins", tab2)
283 tab3 = gui.RadioButton(gui.RadioButton.VERT)
284 tab3.set_items(["Apple", "Orange"])
285
286 def vt_changed(idx):
287 print(f"current cargo: {tab3.selected_value}")
288
289 tab3.set_on_selection_changed(vt_changed)
290 tabs.add_tab("Cargo", tab3)
291 tab4 = gui.RadioButton(gui.RadioButton.HORIZ)
292 tab4.set_items(["Air plane", "Train", "Bus"])
293
294 def hz_changed(idx):
295 print(f"current traffic plan: {tab4.selected_value}")
296
297 tab4.set_on_selection_changed(hz_changed)
298 tabs.add_tab("Traffic", tab4)
299 collapse.add_child(tabs)
300
301 # Quit button. (Typically this is a menu item)
302 button_layout = gui.Horiz()
303 ok_button = gui.Button("Ok")
304 ok_button.set_on_clicked(self._on_ok)
305 button_layout.add_stretch()
306 button_layout.add_child(ok_button)
307
308 layout.add_child(collapse)
309 layout.add_child(button_layout)
310
311 # We're done, set the window's layout
312 w.add_child(layout)
313
314 def _on_filedlg_button(self):
315 filedlg = gui.FileDialog(gui.FileDialog.OPEN, "Select file",
316 self.window.theme)
317 filedlg.add_filter(".obj .ply .stl", "Triangle mesh (.obj, .ply, .stl)")
318 filedlg.add_filter("", "All files")
319 filedlg.set_on_cancel(self._on_filedlg_cancel)
320 filedlg.set_on_done(self._on_filedlg_done)
321 self.window.show_dialog(filedlg)
322
323 def _on_filedlg_cancel(self):
324 self.window.close_dialog()
325
326 def _on_filedlg_done(self, path):
327 self._fileedit.text_value = path
328 self.window.close_dialog()
329
330 def _on_cb(self, is_checked):
331 if is_checked:
332 text = "Sorry, effects are unimplemented"
333 else:
334 text = "Good choice"
335
336 self.show_message_dialog("There might be a problem...", text)
337
338 def _on_switch(self, is_on):
339 if is_on:
340 print("Camera would now be running")
341 else:
342 print("Camera would now be off")
343
344 # This function is essentially the same as window.show_message_box(),
345 # so for something this simple just use that, but it illustrates making a
346 # dialog.
347 def show_message_dialog(self, title, message):
348 # A Dialog is just a widget, so you make its child a layout just like
349 # a Window.
350 dlg = gui.Dialog(title)
351
352 # Add the message text
353 em = self.window.theme.font_size
354 dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
355 dlg_layout.add_child(gui.Label(message))
356
357 # Add the Ok button. We need to define a callback function to handle
358 # the click.
359 ok_button = gui.Button("Ok")
360 ok_button.set_on_clicked(self._on_dialog_ok)
361
362 # We want the Ok button to be an the right side, so we need to add
363 # a stretch item to the layout, otherwise the button will be the size
364 # of the entire row. A stretch item takes up as much space as it can,
365 # which forces the button to be its minimum size.
366 button_layout = gui.Horiz()
367 button_layout.add_stretch()
368 button_layout.add_child(ok_button)
369
370 # Add the button layout,
371 dlg_layout.add_child(button_layout)
372 # ... then add the layout as the child of the Dialog
373 dlg.add_child(dlg_layout)
374 # ... and now we can show the dialog
375 self.window.show_dialog(dlg)
376
377 def _on_dialog_ok(self):
378 self.window.close_dialog()
379
380 def _on_color(self, new_color):
381 self._label.text_color = new_color
382
383 def _on_combo(self, new_val, new_idx):
384 print(new_idx, new_val)
385
386 def _on_list(self, new_val, is_dbl_click):
387 print(new_val)
388
389 def _on_tree(self, new_item_id):
390 print(new_item_id)
391
392 def _on_slider(self, new_val):
393 self._progress.value = new_val / 20.0
394
395 def _on_text_changed(self, new_text):
396 print("edit:", new_text)
397
398 def _on_value_changed(self, new_text):
399 print("value:", new_text)
400
401 def _on_vedit(self, new_val):
402 print(new_val)
403
404 def _on_ok(self):
405 gui.Application.instance.quit()
406
407 def _on_menu_checkable(self):
408 gui.Application.instance.menubar.set_checked(
409 ExampleWindow.MENU_CHECKABLE,
410 not gui.Application.instance.menubar.is_checked(
411 ExampleWindow.MENU_CHECKABLE))
412
413 def _on_menu_quit(self):
414 gui.Application.instance.quit()
415
416
417# This class is essentially the same as window.show_message_box(),
418# so for something this simple just use that, but it illustrates making a
419# dialog.
420class MessageBox:
421
422 def __init__(self, title, message):
423 self._window = None
424
425 # A Dialog is just a widget, so you make its child a layout just like
426 # a Window.
427 dlg = gui.Dialog(title)
428
429 # Add the message text
430 em = self.window.theme.font_size
431 dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
432 dlg_layout.add_child(gui.Label(message))
433
434 # Add the Ok button. We need to define a callback function to handle
435 # the click.
436 ok_button = gui.Button("Ok")
437 ok_button.set_on_clicked(self._on_ok)
438
439 # We want the Ok button to be an the right side, so we need to add
440 # a stretch item to the layout, otherwise the button will be the size
441 # of the entire row. A stretch item takes up as much space as it can,
442 # which forces the button to be its minimum size.
443 button_layout = gui.Horiz()
444 button_layout.add_stretch()
445 button_layout.add_child(ok_button)
446
447 # Add the button layout,
448 dlg_layout.add_child(button_layout)
449 # ... then add the layout as the child of the Dialog
450 dlg.add_child(dlg_layout)
451
452 def show(self, window):
453 self._window = window
454
455 def _on_ok(self):
456 self._window.close_dialog()
457
458
459def main():
460 # We need to initialize the application, which finds the necessary shaders for
461 # rendering and prepares the cross-platform window abstraction.
462 gui.Application.instance.initialize()
463
464 w = ExampleWindow()
465
466 # Run the event loop. This will not return until the last window is closed.
467 gui.Application.instance.run()
468
469
470if __name__ == "__main__":
471 main()
customized_visualization.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import os
9import open3d as o3d
10import numpy as np
11import matplotlib.pyplot as plt
12
13pyexample_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
14test_data_path = os.path.join(os.path.dirname(pyexample_path), 'test_data')
15
16
17def custom_draw_geometry(pcd):
18 # The following code achieves the same effect as:
19 # o3d.visualization.draw_geometries([pcd])
20 vis = o3d.visualization.Visualizer()
21 vis.create_window()
22 vis.add_geometry(pcd)
23 vis.run()
24 vis.destroy_window()
25
26
27def custom_draw_geometry_with_custom_fov(pcd, fov_step):
28 vis = o3d.visualization.Visualizer()
29 vis.create_window()
30 vis.add_geometry(pcd)
31 ctr = vis.get_view_control()
32 print("Field of view (before changing) %.2f" % ctr.get_field_of_view())
33 ctr.change_field_of_view(step=fov_step)
34 print("Field of view (after changing) %.2f" % ctr.get_field_of_view())
35 vis.run()
36 vis.destroy_window()
37
38
39def custom_draw_geometry_with_rotation(pcd):
40
41 def rotate_view(vis):
42 ctr = vis.get_view_control()
43 ctr.rotate(10.0, 0.0)
44 return False
45
46 o3d.visualization.draw_geometries_with_animation_callback([pcd],
47 rotate_view)
48
49
50def custom_draw_geometry_load_option(pcd, render_option_path):
51 vis = o3d.visualization.Visualizer()
52 vis.create_window()
53 vis.add_geometry(pcd)
54 vis.get_render_option().load_from_json(render_option_path)
55 vis.run()
56 vis.destroy_window()
57
58
59def custom_draw_geometry_with_key_callback(pcd, render_option_path):
60
61 def change_background_to_black(vis):
62 opt = vis.get_render_option()
63 opt.background_color = np.asarray([0, 0, 0])
64 return False
65
66 def load_render_option(vis):
67 vis.get_render_option().load_from_json(render_option_path)
68 return False
69
70 def capture_depth(vis):
71 depth = vis.capture_depth_float_buffer()
72 plt.imshow(np.asarray(depth))
73 plt.show()
74 return False
75
76 def capture_image(vis):
77 image = vis.capture_screen_float_buffer()
78 plt.imshow(np.asarray(image))
79 plt.show()
80 return False
81
82 key_to_callback = {}
83 key_to_callback[ord("K")] = change_background_to_black
84 key_to_callback[ord("R")] = load_render_option
85 key_to_callback[ord(",")] = capture_depth
86 key_to_callback[ord(".")] = capture_image
87 o3d.visualization.draw_geometries_with_key_callbacks([pcd], key_to_callback)
88
89
90def custom_draw_geometry_with_camera_trajectory(pcd, render_option_path,
91 camera_trajectory_path):
92 custom_draw_geometry_with_camera_trajectory.index = -1
93 custom_draw_geometry_with_camera_trajectory.trajectory =\
94 o3d.io.read_pinhole_camera_trajectory(camera_trajectory_path)
95 custom_draw_geometry_with_camera_trajectory.vis = o3d.visualization.Visualizer(
96 )
97 image_path = os.path.join(test_data_path, 'image')
98 if not os.path.exists(image_path):
99 os.makedirs(image_path)
100 depth_path = os.path.join(test_data_path, 'depth')
101 if not os.path.exists(depth_path):
102 os.makedirs(depth_path)
103
104 def move_forward(vis):
105 # This function is called within the o3d.visualization.Visualizer::run() loop
106 # The run loop calls the function, then re-render
107 # So the sequence in this function is to:
108 # 1. Capture frame
109 # 2. index++, check ending criteria
110 # 3. Set camera
111 # 4. (Re-render)
112 ctr = vis.get_view_control()
113 glb = custom_draw_geometry_with_camera_trajectory
114 if glb.index >= 0:
115 print("Capture image {:05d}".format(glb.index))
116 depth = vis.capture_depth_float_buffer(False)
117 image = vis.capture_screen_float_buffer(False)
118 plt.imsave(os.path.join(depth_path, '{:05d}.png'.format(glb.index)),
119 np.asarray(depth),
120 dpi=1)
121 plt.imsave(os.path.join(image_path, '{:05d}.png'.format(glb.index)),
122 np.asarray(image),
123 dpi=1)
124 # vis.capture_depth_image("depth/{:05d}.png".format(glb.index), False)
125 # vis.capture_screen_image("image/{:05d}.png".format(glb.index), False)
126 glb.index = glb.index + 1
127 if glb.index < len(glb.trajectory.parameters):
128 ctr.convert_from_pinhole_camera_parameters(
129 glb.trajectory.parameters[glb.index], allow_arbitrary=True)
130 else:
131 custom_draw_geometry_with_camera_trajectory.vis.\
132 register_animation_callback(None)
133 return False
134
135 vis = custom_draw_geometry_with_camera_trajectory.vis
136 vis.create_window()
137 vis.add_geometry(pcd)
138 vis.get_render_option().load_from_json(render_option_path)
139 vis.register_animation_callback(move_forward)
140 vis.run()
141 vis.destroy_window()
142
143
144if __name__ == "__main__":
145 sample_data = o3d.data.DemoCustomVisualization()
146 pcd_flipped = o3d.io.read_point_cloud(sample_data.point_cloud_path)
147 # Flip it, otherwise the pointcloud will be upside down
148 pcd_flipped.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0],
149 [0, 0, 0, 1]])
150
151 print("1. Customized visualization to mimic DrawGeometry")
152 custom_draw_geometry(pcd_flipped)
153
154 print("2. Changing field of view")
155 custom_draw_geometry_with_custom_fov(pcd_flipped, 90.0)
156 custom_draw_geometry_with_custom_fov(pcd_flipped, -90.0)
157
158 print("3. Customized visualization with a rotating view")
159 custom_draw_geometry_with_rotation(pcd_flipped)
160
161 print("4. Customized visualization showing normal rendering")
162 custom_draw_geometry_load_option(pcd_flipped,
163 sample_data.render_option_path)
164
165 print("5. Customized visualization with key press callbacks")
166 print(" Press 'K' to change background color to black")
167 print(" Press 'R' to load a customized render option, showing normals")
168 print(" Press ',' to capture the depth buffer and show it")
169 print(" Press '.' to capture the screen and show it")
170 custom_draw_geometry_with_key_callback(pcd_flipped,
171 sample_data.render_option_path)
172
173 pcd = o3d.io.read_point_cloud(sample_data.point_cloud_path)
174 print("6. Customized visualization playing a camera trajectory")
175 custom_draw_geometry_with_camera_trajectory(
176 pcd, sample_data.render_option_path, sample_data.camera_trajectory_path)
customized_visualization_key_action.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d as o3d
9
10
11def custom_key_action_without_kb_repeat_delay(pcd):
12 rotating = False
13
14 vis = o3d.visualization.VisualizerWithKeyCallback()
15
16 def key_action_callback(vis, action, mods):
17 nonlocal rotating
18 print(action)
19 if action == 1: # key down
20 rotating = True
21 elif action == 0: # key up
22 rotating = False
23 elif action == 2: # key repeat
24 pass
25 return True
26
27 def animation_callback(vis):
28 nonlocal rotating
29 if rotating:
30 ctr = vis.get_view_control()
31 ctr.rotate(10.0, 0.0)
32
33 # key_action_callback will be triggered when there's a keyboard press, release or repeat event
34 vis.register_key_action_callback(32, key_action_callback) # space
35
36 # animation_callback is always repeatedly called by the visualizer
37 vis.register_animation_callback(animation_callback)
38
39 vis.create_window()
40 vis.add_geometry(pcd)
41 vis.run()
42
43
44if __name__ == "__main__":
45 ply_data = o3d.data.PLYPointCloud()
46 pcd = o3d.io.read_point_cloud(ply_data.path)
47
48 print(
49 "Customized visualization with smooth key action (without keyboard repeat delay)"
50 )
51 custom_key_action_without_kb_repeat_delay(pcd)
demo_scene.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7"""Demo scene demonstrating models, built-in shapes, and materials"""
8
9import math
10import numpy as np
11import os
12import open3d as o3d
13import open3d.visualization as vis
14
15
16def convert_material_record(mat_record):
17 mat = vis.Material('defaultLit')
18 # Convert scalar parameters
19 mat.vector_properties['base_color'] = mat_record.base_color
20 mat.scalar_properties['metallic'] = mat_record.base_metallic
21 mat.scalar_properties['roughness'] = mat_record.base_roughness
22 mat.scalar_properties['reflectance'] = mat_record.base_reflectance
23 mat.texture_maps['albedo'] = o3d.t.geometry.Image.from_legacy(
24 mat_record.albedo_img)
25 mat.texture_maps['normal'] = o3d.t.geometry.Image.from_legacy(
26 mat_record.normal_img)
27 mat.texture_maps['ao_rough_metal'] = o3d.t.geometry.Image.from_legacy(
28 mat_record.ao_rough_metal_img)
29 return mat
30
31
32def create_scene():
33 '''
34 Creates the geometry and materials for the demo scene and returns a dictionary suitable for draw call
35 '''
36 # Create some shapes for our scene
37 a_cube = o3d.geometry.TriangleMesh.create_box(2,
38 4,
39 4,
40 create_uv_map=True,
41 map_texture_to_each_face=True)
42 a_cube.compute_triangle_normals()
43 a_cube.translate((-5, 0, -2))
44 a_cube = o3d.t.geometry.TriangleMesh.from_legacy(a_cube)
45
46 a_sphere = o3d.geometry.TriangleMesh.create_sphere(2.5,
47 resolution=40,
48 create_uv_map=True)
49 a_sphere.compute_vertex_normals()
50 rotate_90 = o3d.geometry.get_rotation_matrix_from_xyz((-math.pi / 2, 0, 0))
51 a_sphere.rotate(rotate_90)
52 a_sphere.translate((5, 2.4, 0))
53 a_sphere = o3d.t.geometry.TriangleMesh.from_legacy(a_sphere)
54
55 a_cylinder = o3d.geometry.TriangleMesh.create_cylinder(
56 1.0, 4.0, 30, 4, True)
57 a_cylinder.compute_triangle_normals()
58 a_cylinder.rotate(rotate_90)
59 a_cylinder.translate((10, 2, 0))
60 a_cylinder = o3d.t.geometry.TriangleMesh.from_legacy(a_cylinder)
61
62 a_ico = o3d.geometry.TriangleMesh.create_icosahedron(1.25,
63 create_uv_map=True)
64 a_ico.compute_triangle_normals()
65 a_ico.translate((-10, 2, 0))
66 a_ico = o3d.t.geometry.TriangleMesh.from_legacy(a_ico)
67
68 # Load an OBJ model for our scene
69 helmet_data = o3d.data.FlightHelmetModel()
70 helmet = o3d.io.read_triangle_model(helmet_data.path)
71 helmet_parts = []
72 for m in helmet.meshes:
73 # m.mesh.paint_uniform_color((1.0, 0.75, 0.3))
74 m.mesh.scale(10.0, (0.0, 0.0, 0.0))
75 helmet_parts.append(m)
76
77 # Create a ground plane
78 ground_plane = o3d.geometry.TriangleMesh.create_box(
79 50.0, 0.1, 50.0, create_uv_map=True, map_texture_to_each_face=True)
80 ground_plane.compute_triangle_normals()
81 rotate_180 = o3d.geometry.get_rotation_matrix_from_xyz((-math.pi, 0, 0))
82 ground_plane.rotate(rotate_180)
83 ground_plane.translate((-25.0, -0.1, -25.0))
84 ground_plane.paint_uniform_color((1, 1, 1))
85 ground_plane = o3d.t.geometry.TriangleMesh.from_legacy(ground_plane)
86
87 # Material to make ground plane more interesting - a rough piece of glass
88 ground_plane.material = vis.Material("defaultLitSSR")
89 ground_plane.material.scalar_properties['roughness'] = 0.15
90 ground_plane.material.scalar_properties['reflectance'] = 0.72
91 ground_plane.material.scalar_properties['transmission'] = 0.6
92 ground_plane.material.scalar_properties['thickness'] = 0.3
93 ground_plane.material.scalar_properties['absorption_distance'] = 0.1
94 ground_plane.material.vector_properties['absorption_color'] = np.array(
95 [0.82, 0.98, 0.972, 1.0])
96 painted_plaster_texture_data = o3d.data.PaintedPlasterTexture()
97 ground_plane.material.texture_maps['albedo'] = o3d.t.io.read_image(
98 painted_plaster_texture_data.albedo_texture_path)
99 ground_plane.material.texture_maps['normal'] = o3d.t.io.read_image(
100 painted_plaster_texture_data.normal_texture_path)
101 ground_plane.material.texture_maps['roughness'] = o3d.t.io.read_image(
102 painted_plaster_texture_data.roughness_texture_path)
103
104 # Load textures and create materials for each of our demo items
105 wood_floor_texture_data = o3d.data.WoodFloorTexture()
106 a_cube.material = vis.Material('defaultLit')
107 a_cube.material.texture_maps['albedo'] = o3d.t.io.read_image(
108 wood_floor_texture_data.albedo_texture_path)
109 a_cube.material.texture_maps['normal'] = o3d.t.io.read_image(
110 wood_floor_texture_data.normal_texture_path)
111 a_cube.material.texture_maps['roughness'] = o3d.t.io.read_image(
112 wood_floor_texture_data.roughness_texture_path)
113
114 tiles_texture_data = o3d.data.TilesTexture()
115 a_sphere.material = vis.Material('defaultLit')
116 a_sphere.material.texture_maps['albedo'] = o3d.t.io.read_image(
117 tiles_texture_data.albedo_texture_path)
118 a_sphere.material.texture_maps['normal'] = o3d.t.io.read_image(
119 tiles_texture_data.normal_texture_path)
120 a_sphere.material.texture_maps['roughness'] = o3d.t.io.read_image(
121 tiles_texture_data.roughness_texture_path)
122
123 terrazzo_texture_data = o3d.data.TerrazzoTexture()
124 a_ico.material = vis.Material('defaultLit')
125 a_ico.material.texture_maps['albedo'] = o3d.t.io.read_image(
126 terrazzo_texture_data.albedo_texture_path)
127 a_ico.material.texture_maps['normal'] = o3d.t.io.read_image(
128 terrazzo_texture_data.normal_texture_path)
129 a_ico.material.texture_maps['roughness'] = o3d.t.io.read_image(
130 terrazzo_texture_data.roughness_texture_path)
131
132 metal_texture_data = o3d.data.MetalTexture()
133 a_cylinder.material = vis.Material('defaultLit')
134 a_cylinder.material.texture_maps['albedo'] = o3d.t.io.read_image(
135 metal_texture_data.albedo_texture_path)
136 a_cylinder.material.texture_maps['normal'] = o3d.t.io.read_image(
137 metal_texture_data.normal_texture_path)
138 a_cylinder.material.texture_maps['roughness'] = o3d.t.io.read_image(
139 metal_texture_data.roughness_texture_path)
140 a_cylinder.material.texture_maps['metallic'] = o3d.t.io.read_image(
141 metal_texture_data.metallic_texture_path)
142
143 geoms = [{
144 "name": "plane",
145 "geometry": ground_plane
146 }, {
147 "name": "cube",
148 "geometry": a_cube
149 }, {
150 "name": "cylinder",
151 "geometry": a_cylinder
152 }, {
153 "name": "ico",
154 "geometry": a_ico
155 }, {
156 "name": "sphere",
157 "geometry": a_sphere
158 }]
159 # Load the helmet
160 for part in helmet_parts:
161 name = part.mesh_name
162 tgeom = o3d.t.geometry.TriangleMesh.from_legacy(part.mesh)
163 tgeom.material = convert_material_record(
164 helmet.materials[part.material_idx])
165 geoms.append({"name": name, "geometry": tgeom})
166 return geoms
167
168
169if __name__ == "__main__":
170 geoms = create_scene()
171 vis.draw(geoms,
172 bg_color=(0.8, 0.9, 0.9, 1.0),
173 show_ui=True,
174 width=1920,
175 height=1080)
draw.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import math
9import numpy as np
10import open3d as o3d
11import open3d.visualization as vis
12import os
13import random
14
15pyexample_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
16test_data_path = os.path.join(os.path.dirname(pyexample_path), 'test_data')
17
18
19def normalize(v):
20 a = 1.0 / math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2])
21 return (a * v[0], a * v[1], a * v[2])
22
23
24def make_point_cloud(npts, center, radius, colorize):
25 pts = np.random.uniform(-radius, radius, size=[npts, 3]) + center
26 cloud = o3d.geometry.PointCloud()
27 cloud.points = o3d.utility.Vector3dVector(pts)
28 if colorize:
29 colors = np.random.uniform(0.0, 1.0, size=[npts, 3])
30 cloud.colors = o3d.utility.Vector3dVector(colors)
31 return cloud
32
33
34def single_object():
35 # No colors, no normals, should appear unlit black
36 cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4)
37 vis.draw(cube)
38
39
40def multi_objects():
41 pc_rad = 1.0
42 pc_nocolor = make_point_cloud(100, (0, -2, 0), pc_rad, False)
43 pc_color = make_point_cloud(100, (3, -2, 0), pc_rad, True)
44 r = 0.4
45 sphere_unlit = o3d.geometry.TriangleMesh.create_sphere(r)
46 sphere_unlit.translate((0, 1, 0))
47 sphere_colored_unlit = o3d.geometry.TriangleMesh.create_sphere(r)
48 sphere_colored_unlit.paint_uniform_color((1.0, 0.0, 0.0))
49 sphere_colored_unlit.translate((2, 1, 0))
50 sphere_lit = o3d.geometry.TriangleMesh.create_sphere(r)
51 sphere_lit.compute_vertex_normals()
52 sphere_lit.translate((4, 1, 0))
53 sphere_colored_lit = o3d.geometry.TriangleMesh.create_sphere(r)
54 sphere_colored_lit.compute_vertex_normals()
55 sphere_colored_lit.paint_uniform_color((0.0, 1.0, 0.0))
56 sphere_colored_lit.translate((6, 1, 0))
57 big_bbox = o3d.geometry.AxisAlignedBoundingBox((-pc_rad, -3, -pc_rad),
58 (6.0 + r, 1.0 + r, pc_rad))
59 big_bbox.color = (0.0, 0.0, 0.0)
60 sphere_bbox = sphere_unlit.get_axis_aligned_bounding_box()
61 sphere_bbox.color = (1.0, 0.5, 0.0)
62 lines = o3d.geometry.LineSet.create_from_axis_aligned_bounding_box(
63 sphere_lit.get_axis_aligned_bounding_box())
64 lines.paint_uniform_color((0.0, 1.0, 0.0))
65 lines_colored = o3d.geometry.LineSet.create_from_axis_aligned_bounding_box(
66 sphere_colored_lit.get_axis_aligned_bounding_box())
67 lines_colored.paint_uniform_color((0.0, 0.0, 1.0))
68
69 vis.draw([
70 pc_nocolor, pc_color, sphere_unlit, sphere_colored_unlit, sphere_lit,
71 sphere_colored_lit, big_bbox, sphere_bbox, lines, lines_colored
72 ])
73
74
75def actions():
76 SOURCE_NAME = "Source"
77 RESULT_NAME = "Result (Poisson reconstruction)"
78 TRUTH_NAME = "Ground truth"
79
80 bunny = o3d.data.BunnyMesh()
81 bunny_mesh = o3d.io.read_triangle_mesh(bunny.path)
82 bunny_mesh.compute_vertex_normals()
83
84 bunny_mesh.paint_uniform_color((1, 0.75, 0))
85 bunny_mesh.compute_vertex_normals()
86 cloud = o3d.geometry.PointCloud()
87 cloud.points = bunny_mesh.vertices
88 cloud.normals = bunny_mesh.vertex_normals
89
90 def make_mesh(o3dvis):
91 # TODO: call o3dvis.get_geometry instead of using bunny_mesh
92 mesh, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
93 cloud)
94 mesh.paint_uniform_color((1, 1, 1))
95 mesh.compute_vertex_normals()
96 o3dvis.add_geometry({"name": RESULT_NAME, "geometry": mesh})
97 o3dvis.show_geometry(SOURCE_NAME, False)
98
99 def toggle_result(o3dvis):
100 truth_vis = o3dvis.get_geometry(TRUTH_NAME).is_visible
101 o3dvis.show_geometry(TRUTH_NAME, not truth_vis)
102 o3dvis.show_geometry(RESULT_NAME, truth_vis)
103
104 vis.draw([{
105 "name": SOURCE_NAME,
106 "geometry": cloud
107 }, {
108 "name": TRUTH_NAME,
109 "geometry": bunny_mesh,
110 "is_visible": False
111 }],
112 actions=[("Create Mesh", make_mesh),
113 ("Toggle truth/result", toggle_result)])
114
115
116def get_icp_transform(source, target, source_indices, target_indices):
117 corr = np.zeros((len(source_indices), 2))
118 corr[:, 0] = source_indices
119 corr[:, 1] = target_indices
120
121 # Estimate rough transformation using correspondences
122 p2p = o3d.pipelines.registration.TransformationEstimationPointToPoint()
123 trans_init = p2p.compute_transformation(source, target,
124 o3d.utility.Vector2iVector(corr))
125
126 # Point-to-point ICP for refinement
127 threshold = 0.03 # 3cm distance threshold
128 reg_p2p = o3d.pipelines.registration.registration_icp(
129 source, target, threshold, trans_init,
130 o3d.pipelines.registration.TransformationEstimationPointToPoint())
131
132 return reg_p2p.transformation
133
134
135def selections():
136 pcd_fragments_data = o3d.data.DemoICPPointClouds()
137 source = o3d.io.read_point_cloud(pcd_fragments_data.paths[0])
138 target = o3d.io.read_point_cloud(pcd_fragments_data.paths[1])
139 source.paint_uniform_color([1, 0.706, 0])
140 target.paint_uniform_color([0, 0.651, 0.929])
141
142 source_name = "Source (yellow)"
143 target_name = "Target (blue)"
144
145 def do_icp_one_set(o3dvis):
146 # sets: [name: [{ "index": int, "order": int, "point": (x, y, z)}, ...],
147 # ...]
148 sets = o3dvis.get_selection_sets()
149 source_picked = sorted(list(sets[0][source_name]),
150 key=lambda x: x.order)
151 target_picked = sorted(list(sets[0][target_name]),
152 key=lambda x: x.order)
153 source_indices = [idx.index for idx in source_picked]
154 target_indices = [idx.index for idx in target_picked]
155
156 t = get_icp_transform(source, target, source_indices, target_indices)
157 source.transform(t)
158
159 # Update the source geometry
160 o3dvis.remove_geometry(source_name)
161 o3dvis.add_geometry({"name": source_name, "geometry": source})
162
163 def do_icp_two_sets(o3dvis):
164 sets = o3dvis.get_selection_sets()
165 source_set = sets[0][source_name]
166 target_set = sets[1][target_name]
167 source_picked = sorted(list(source_set), key=lambda x: x.order)
168 target_picked = sorted(list(target_set), key=lambda x: x.order)
169 source_indices = [idx.index for idx in source_picked]
170 target_indices = [idx.index for idx in target_picked]
171
172 t = get_icp_transform(source, target, source_indices, target_indices)
173 source.transform(t)
174
175 # Update the source geometry
176 o3dvis.remove_geometry(source_name)
177 o3dvis.add_geometry({"name": source_name, "geometry": source})
178
179 vis.draw([{
180 "name": source_name,
181 "geometry": source
182 }, {
183 "name": target_name,
184 "geometry": target
185 }],
186 actions=[("ICP Registration (one set)", do_icp_one_set),
187 ("ICP Registration (two sets)", do_icp_two_sets)],
188 show_ui=True)
189
190
191def time_animation():
192 orig = make_point_cloud(200, (0, 0, 0), 1.0, True)
193 clouds = [{"name": "t=0", "geometry": orig, "time": 0}]
194 drift_dir = (1.0, 0.0, 0.0)
195 expand = 1.0
196 n = 20
197 for i in range(1, n):
198 amount = float(i) / float(n - 1)
199 cloud = o3d.geometry.PointCloud()
200 pts = np.asarray(orig.points)
201 pts = pts * (1.0 + amount * expand) + [amount * v for v in drift_dir]
202 cloud.points = o3d.utility.Vector3dVector(pts)
203 cloud.colors = orig.colors
204 clouds.append({
205 "name": "points at t=" + str(i),
206 "geometry": cloud,
207 "time": i
208 })
209
210 vis.draw(clouds)
211
212
213def groups():
214 building_mat = vis.rendering.MaterialRecord()
215 building_mat.shader = "defaultLit"
216 building_mat.base_color = (1.0, .90, .75, 1.0)
217 building_mat.base_reflectance = 0.1
218 midrise_mat = vis.rendering.MaterialRecord()
219 midrise_mat.shader = "defaultLit"
220 midrise_mat.base_color = (.475, .450, .425, 1.0)
221 midrise_mat.base_reflectance = 0.1
222 skyscraper_mat = vis.rendering.MaterialRecord()
223 skyscraper_mat.shader = "defaultLit"
224 skyscraper_mat.base_color = (.05, .20, .55, 1.0)
225 skyscraper_mat.base_reflectance = 0.9
226 skyscraper_mat.base_roughness = 0.01
227
228 buildings = []
229 size = 10.0
230 half = size / 2.0
231 min_height = 1.0
232 max_height = 20.0
233 for z in range(0, 10):
234 for x in range(0, 10):
235 max_h = max_height * (1.0 - abs(half - x) / half) * (
236 1.0 - abs(half - z) / half)
237 h = random.uniform(min_height, max(max_h, min_height + 1.0))
238 box = o3d.geometry.TriangleMesh.create_box(0.9, h, 0.9)
239 box.compute_triangle_normals()
240 box.translate((x + 0.05, 0.0, z + 0.05))
241 if h > 0.333 * max_height:
242 mat = skyscraper_mat
243 elif h > 0.1 * max_height:
244 mat = midrise_mat
245 else:
246 mat = building_mat
247 buildings.append({
248 "name": "building_" + str(x) + "_" + str(z),
249 "geometry": box,
250 "material": mat,
251 "group": "buildings"
252 })
253
254 haze = make_point_cloud(5000, (half, 0.333 * max_height, half),
255 1.414 * half, False)
256 haze.paint_uniform_color((0.8, 0.8, 0.8))
257
258 smog = make_point_cloud(10000, (half, 0.25 * max_height, half), 1.2 * half,
259 False)
260 smog.paint_uniform_color((0.95, 0.85, 0.75))
261
262 vis.draw(buildings + [{
263 "name": "haze",
264 "geometry": haze,
265 "group": "haze"
266 }, {
267 "name": "smog",
268 "geometry": smog,
269 "group": "smog"
270 }])
271
272
273def remove():
274
275 def make_sphere(name, center, color, group, time):
276 sphere = o3d.geometry.TriangleMesh.create_sphere(0.5)
277 sphere.compute_vertex_normals()
278 sphere.translate(center)
279
280 mat = vis.rendering.Material()
281 mat.shader = "defaultLit"
282 mat.base_color = color
283
284 return {
285 "name": name,
286 "geometry": sphere,
287 "material": mat,
288 "group": group,
289 "time": time
290 }
291
292 red = make_sphere("red", (0, 0, 0), (1.0, 0.0, 0.0, 1.0), "spheres", 0)
293 green = make_sphere("green", (2, 0, 0), (0.0, 1.0, 0.0, 1.0), "spheres", 0)
294 blue = make_sphere("blue", (4, 0, 0), (0.0, 0.0, 1.0, 1.0), "spheres", 0)
295 yellow = make_sphere("yellow", (0, 0, 0), (1.0, 1.0, 0.0, 1.0), "spheres",
296 1)
297 bbox = {
298 "name": "bbox",
299 "geometry": red["geometry"].get_axis_aligned_bounding_box()
300 }
301
302 def remove_green(visdraw):
303 visdraw.remove_geometry("green")
304
305 def remove_yellow(visdraw):
306 visdraw.remove_geometry("yellow")
307
308 def remove_bbox(visdraw):
309 visdraw.remove_geometry("bbox")
310
311 vis.draw([red, green, blue, yellow, bbox],
312 actions=[("Remove Green", remove_green),
313 ("Remove Yellow", remove_yellow),
314 ("Remove Bounds", remove_bbox)])
315
316
317def main():
318 single_object()
319 multi_objects()
320 actions()
321 selections()
322 groups()
323 time_animation()
324
325
326if __name__ == "__main__":
327 main()
draw_webrtc.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d as o3d
9
10if __name__ == "__main__":
11 o3d.visualization.webrtc_server.enable_webrtc()
12 cube_red = o3d.geometry.TriangleMesh.create_box(1, 2, 4)
13 cube_red.compute_vertex_normals()
14 cube_red.paint_uniform_color((1.0, 0.0, 0.0))
15 o3d.visualization.draw(cube_red)
headless_rendering.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import os
9import open3d as o3d
10import numpy as np
11import matplotlib.pyplot as plt
12
13
14def custom_draw_geometry_with_camera_trajectory(pcd, camera_trajectory_path,
15 render_option_path,
16 output_path):
17 custom_draw_geometry_with_camera_trajectory.index = -1
18 custom_draw_geometry_with_camera_trajectory.trajectory =\
19 o3d.io.read_pinhole_camera_trajectory(camera_trajectory_path)
20 custom_draw_geometry_with_camera_trajectory.vis = o3d.visualization.Visualizer(
21 )
22 image_path = os.path.join(output_path, 'image')
23 if not os.path.exists(image_path):
24 os.makedirs(image_path)
25 depth_path = os.path.join(output_path, 'depth')
26 if not os.path.exists(depth_path):
27 os.makedirs(depth_path)
28
29 print("Saving color images in " + image_path)
30 print("Saving depth images in " + depth_path)
31
32 def move_forward(vis):
33 # This function is called within the o3d.visualization.Visualizer::run() loop
34 # The run loop calls the function, then re-render
35 # So the sequence in this function is to:
36 # 1. Capture frame
37 # 2. index++, check ending criteria
38 # 3. Set camera
39 # 4. (Re-render)
40 ctr = vis.get_view_control()
41 glb = custom_draw_geometry_with_camera_trajectory
42 if glb.index >= 0:
43 print("Capture image {:05d}".format(glb.index))
44 # Capture and save image using Open3D.
45 vis.capture_depth_image(
46 os.path.join(depth_path, "{:05d}.png".format(glb.index)), False)
47 vis.capture_screen_image(
48 os.path.join(image_path, "{:05d}.png".format(glb.index)), False)
49
50 # Example to save image using matplotlib.
51 '''
52 depth = vis.capture_depth_float_buffer()
53 image = vis.capture_screen_float_buffer()
54 plt.imsave(os.path.join(depth_path, "{:05d}.png".format(glb.index)),
55 np.asarray(depth),
56 dpi=1)
57 plt.imsave(os.path.join(image_path, "{:05d}.png".format(glb.index)),
58 np.asarray(image),
59 dpi=1)
60 '''
61
62 glb.index = glb.index + 1
63 if glb.index < len(glb.trajectory.parameters):
64 ctr.convert_from_pinhole_camera_parameters(
65 glb.trajectory.parameters[glb.index])
66 else:
67 custom_draw_geometry_with_camera_trajectory.vis.destroy_window()
68
69 # Return false as we don't need to call UpdateGeometry()
70 return False
71
72 vis = custom_draw_geometry_with_camera_trajectory.vis
73 vis.create_window()
74 vis.add_geometry(pcd)
75 vis.get_render_option().load_from_json(render_option_path)
76 vis.register_animation_callback(move_forward)
77 vis.run()
78
79
80if __name__ == "__main__":
81 if not o3d._build_config['ENABLE_HEADLESS_RENDERING']:
82 print("Headless rendering is not enabled. "
83 "Please rebuild Open3D with ENABLE_HEADLESS_RENDERING=ON")
84 exit(1)
85
86 sample_data = o3d.data.DemoCustomVisualization()
87 pcd = o3d.io.read_point_cloud(sample_data.point_cloud_path)
88 print("Customized visualization playing a camera trajectory. "
89 "Press ctrl+z to terminate.")
90 custom_draw_geometry_with_camera_trajectory(
91 pcd, sample_data.camera_trajectory_path, sample_data.render_option_path,
92 'HeadlessRenderingOutput')
interactive_visualization.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8# examples/python/visualization/interactive_visualization.py
9
10import numpy as np
11import copy
12import open3d as o3d
13
14
15def demo_crop_geometry():
16 print("Demo for manual geometry cropping")
17 print(
18 "1) Press 'Y' twice to align geometry with negative direction of y-axis"
19 )
20 print("2) Press 'K' to lock screen and to switch to selection mode")
21 print("3) Drag for rectangle selection,")
22 print(" or use ctrl + left click for polygon selection")
23 print("4) Press 'C' to get a selected geometry")
24 print("5) Press 'S' to save the selected geometry")
25 print("6) Press 'F' to switch to freeview mode")
26 pcd_data = o3d.data.DemoICPPointClouds()
27 pcd = o3d.io.read_point_cloud(pcd_data.paths[0])
28 o3d.visualization.draw_geometries_with_editing([pcd])
29
30
31def draw_registration_result(source, target, transformation):
32 source_temp = copy.deepcopy(source)
33 target_temp = copy.deepcopy(target)
34 source_temp.paint_uniform_color([1, 0.706, 0])
35 target_temp.paint_uniform_color([0, 0.651, 0.929])
36 source_temp.transform(transformation)
37 o3d.visualization.draw_geometries([source_temp, target_temp])
38
39
40def prepare_data():
41 pcd_data = o3d.data.DemoICPPointClouds()
42 source = o3d.io.read_point_cloud(pcd_data.paths[0])
43 target = o3d.io.read_point_cloud(pcd_data.paths[2])
44 print("Visualization of two point clouds before manual alignment")
45 draw_registration_result(source, target, np.identity(4))
46 return source, target
47
48
49def pick_points(pcd):
50 print("")
51 print(
52 "1) Please pick at least three correspondences using [shift + left click]"
53 )
54 print(" Press [shift + right click] to undo point picking")
55 print("2) After picking points, press 'Q' to close the window")
56 vis = o3d.visualization.VisualizerWithEditing()
57 vis.create_window()
58 vis.add_geometry(pcd)
59 vis.run() # user picks points
60 vis.destroy_window()
61 print("")
62 return vis.get_picked_points()
63
64
65def register_via_correspondences(source, target, source_points, target_points):
66 corr = np.zeros((len(source_points), 2))
67 corr[:, 0] = source_points
68 corr[:, 1] = target_points
69 # estimate rough transformation using correspondences
70 print("Compute a rough transform using the correspondences given by user")
71 p2p = o3d.pipelines.registration.TransformationEstimationPointToPoint()
72 trans_init = p2p.compute_transformation(source, target,
73 o3d.utility.Vector2iVector(corr))
74 # point-to-point ICP for refinement
75 print("Perform point-to-point ICP refinement")
76 threshold = 0.03 # 3cm distance threshold
77 reg_p2p = o3d.pipelines.registration.registration_icp(
78 source, target, threshold, trans_init,
79 o3d.pipelines.registration.TransformationEstimationPointToPoint())
80 draw_registration_result(source, target, reg_p2p.transformation)
81
82
83def demo_manual_registration():
84 print("Demo for manual ICP")
85 source, target = prepare_data()
86
87 # pick points from two point clouds and builds correspondences
88 source_points = pick_points(source)
89 target_points = pick_points(target)
90 assert (len(source_points) >= 3 and len(target_points) >= 3)
91 assert (len(source_points) == len(target_points))
92 register_via_correspondences(source, target, source_points, target_points)
93 print("")
94
95
96if __name__ == "__main__":
97 demo_crop_geometry()
98 demo_manual_registration()
line_width.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d as o3d
9import random
10
11NUM_LINES = 10
12
13
14def random_point():
15 return [5 * random.random(), 5 * random.random(), 5 * random.random()]
16
17
18def main():
19 pts = [random_point() for _ in range(0, 2 * NUM_LINES)]
20 line_indices = [[2 * i, 2 * i + 1] for i in range(0, NUM_LINES)]
21 colors = [[0.0, 0.0, 0.0] for _ in range(0, NUM_LINES)]
22
23 lines = o3d.geometry.LineSet()
24 lines.points = o3d.utility.Vector3dVector(pts)
25 lines.lines = o3d.utility.Vector2iVector(line_indices)
26 # The default color of the lines is white, which will be invisible on the
27 # default white background. So we either need to set the color of the lines
28 # or the base_color of the material.
29 lines.colors = o3d.utility.Vector3dVector(colors)
30
31 # Some platforms do not require OpenGL implementations to support wide lines,
32 # so the renderer requires a custom shader to implement this: "unlitLine".
33 # The line_width field is only used by this shader; all other shaders ignore
34 # it.
35 mat = o3d.visualization.rendering.MaterialRecord()
36 mat.shader = "unlitLine"
37 mat.line_width = 10 # note that this is scaled with respect to pixels,
38 # so will give different results depending on the
39 # scaling values of your system
40 o3d.visualization.draw({
41 "name": "lines",
42 "geometry": lines,
43 "material": mat
44 })
45
46
47if __name__ == "__main__":
48 main()
load_save_viewpoint.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d as o3d
9
10
11def save_view_point(pcd, filename):
12 vis = o3d.visualization.Visualizer()
13 vis.create_window()
14 vis.add_geometry(pcd)
15 vis.run() # user changes the view and press "q" to terminate
16 param = vis.get_view_control().convert_to_pinhole_camera_parameters()
17 o3d.io.write_pinhole_camera_parameters(filename, param)
18 vis.destroy_window()
19
20
21def load_view_point(pcd, filename):
22 vis = o3d.visualization.Visualizer()
23 vis.create_window()
24 ctr = vis.get_view_control()
25 param = o3d.io.read_pinhole_camera_parameters(filename)
26 vis.add_geometry(pcd)
27 ctr.convert_from_pinhole_camera_parameters(param)
28 vis.run()
29 vis.destroy_window()
30
31
32if __name__ == "__main__":
33 pcd_data = o3d.data.PCDPointCloud()
34 pcd = o3d.io.read_point_cloud(pcd_data.path)
35 save_view_point(pcd, "viewpoint.json")
36 load_view_point(pcd, "viewpoint.json")
mitsuba_material_estimation.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import sys
9import argparse
10from pathlib import Path
11import open3d as o3d
12import mitsuba as mi
13import drjit as dr
14import numpy as np
15import math
16
17
18def make_mitsuba_scene(mesh, cam_xform, fov, width, height, principle_pts,
19 envmap):
20 # Camera transform
21 t_from_np = mi.ScalarTransform4f(cam_xform)
22 # Transform necessary to get from Open3D's environment map coordinate system
23 # to Mitsuba's
24 env_t = mi.ScalarTransform4f.rotate(axis=[0, 0, 1],
25 angle=90).rotate(axis=[1, 0, 0],
26 angle=90)
27 scene_dict = {
28 "type": "scene",
29 "integrator": {
30 'type': 'path'
31 },
32 "light": {
33 "type": "envmap",
34 "to_world": env_t,
35 "bitmap": mi.Bitmap(envmap),
36 },
37 "sensor": {
38 "type": "perspective",
39 "fov": fov,
40 "to_world": t_from_np,
41 "principal_point_offset_x": principle_pts[0],
42 "principal_point_offset_y": principle_pts[1],
43 "thefilm": {
44 "type": "hdrfilm",
45 "width": width,
46 "height": height,
47 },
48 "thesampler": {
49 "type": "multijitter",
50 "sample_count": 64,
51 },
52 },
53 "themesh": mesh,
54 }
55
56 scene = mi.load_dict(scene_dict)
57 return scene
58
59
60def run_estimation(mesh, cam_info, ref_image, env_width, iterations, tv_alpha):
61 # Make Mitsuba mesh from Open3D mesh -- conversion will attach a Mitsuba
62 # Principled BSDF to the mesh
63 mesh_opt = mesh.to_mitsuba('themesh')
64
65 # Prepare empty environment map
66 empty_envmap = np.ones((int(env_width / 2), env_width, 3))
67
68 # Create Mitsuba scene
69 scene = make_mitsuba_scene(mesh_opt, cam_info[0], cam_info[1], cam_info[2],
70 cam_info[3], cam_info[4], empty_envmap)
71
72 def total_variation(image, alpha):
73 diff1 = image[1:, :, :] - image[:-1, :, :]
74 diff2 = image[:, 1:, :] - image[:, :-1, :]
75 return alpha * (dr.sum(dr.abs(diff1)) / len(diff1) +
76 dr.sum(dr.abs(diff2)) / len(diff2))
77
78 def mse(image, ref_img):
79 return dr.mean(dr.sqr(image - ref_img))
80
81 params = mi.traverse(scene)
82 print(params)
83
84 # Create a Mitsuba Optimizer and configure it to optimize albedo and
85 # environment maps
86 opt = mi.ad.Adam(lr=0.05, mask_updates=True)
87 opt['themesh.bsdf.base_color.data'] = params['themesh.bsdf.base_color.data']
88 opt['light.data'] = params['light.data']
89 params.update(opt)
90
91 integrator = mi.load_dict({'type': 'prb'})
92 for i in range(iterations):
93 img = mi.render(scene, params, spp=8, seed=i, integrator=integrator)
94
95 # Compute loss
96 loss = mse(img, ref_image)
97 # Apply TV regularization if requested
98 if tv_alpha > 0.0:
99 loss = loss + total_variation(opt['themesh.bsdf.base_color.data'],
100 tv_alpha)
101
102 # Backpropogate and step. Note: if we were optimizing over a larger set
103 # of inputs not just a single image we might want to step only every x
104 # number of inputs
105 dr.backward(loss)
106 opt.step()
107
108 # Make sure albedo values stay in allowed range
109 opt['themesh.bsdf.base_color.data'] = dr.clamp(
110 opt['themesh.bsdf.base_color.data'], 0.0, 1.0)
111 params.update(opt)
112 print(f'Iteration {i} complete')
113
114 # Done! Return the estimated maps
115 albedo_img = params['themesh.bsdf.base_color.data'].numpy()
116 envmap_img = params['light.data'].numpy()
117 return (albedo_img, envmap_img)
118
119
120def load_input_mesh(model_path, tex_dim):
121 mesh = o3d.t.io.read_triangle_mesh(str(model_path))
122 mesh.material.set_default_properties()
123 mesh.material.material_name = 'defaultLit' # note: ignored by Mitsuba, just used to visualize in Open3D
124 mesh.material.texture_maps['albedo'] = o3d.t.geometry.Image(0.5 + np.zeros(
125 (tex_dim, tex_dim, 3), dtype=np.float32))
126 return mesh
127
128
129def load_input_data(object, camera_pose, input_image, tex_dim):
130 print(f'Loading {object}...')
131 mesh = load_input_mesh(object, tex_dim)
132
133 print(f'Loading camera pose from {camera_pose}...')
134 cam_npz = np.load(camera_pose)
135 img_width = cam_npz['width'].item()
136 img_height = cam_npz['height'].item()
137 cam_xform = np.linalg.inv(cam_npz['T'])
138 cam_xform = np.matmul(
139 cam_xform,
140 np.array([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
141 dtype=np.float32))
142 fov = 2 * np.arctan(0.5 * img_width / cam_npz['K'][0, 0])
143 fov = (180.0 / math.pi) * fov.item()
144 camera = (cam_xform, fov, img_width, img_height, (0.0, 0.0))
145
146 print(f'Loading reference image from {input_image}...')
147 ref_img = o3d.t.io.read_image(str(input_image))
148 ref_img = ref_img.as_tensor()[:, :, 0:3].to(o3d.core.Dtype.Float32) / 255.0
149 bmp = mi.Bitmap(ref_img.numpy()).convert(srgb_gamma=False)
150 ref_img = mi.TensorXf(bmp)
151 return (mesh, camera, ref_img)
152
153
154if __name__ == '__main__':
155 parser = argparse.ArgumentParser(
156 description=
157 "Script that estimates texture and environment map from an input image and geometry. You can find data to test this script here: https://github.com/isl-org/open3d_downloads/releases/download/mitsuba-demos/raven_mitsuba.zip.",
158 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
159 parser.add_argument(
160 'object_path',
161 type=Path,
162 help=
163 "Path to geometry for which to estimate albedo. It is assumed that in the same directory will be an object-name.npz which contains the camera pose information and an object-name.png which is the input image"
164 )
165 parser.add_argument('--env-width', type=int, default=1024)
166 parser.add_argument('--tex-width',
167 type=int,
168 default=2048,
169 help="The dimensions of the texture")
170 parser.add_argument(
171 '--device',
172 default='cuda' if o3d.core.cuda.is_available() else 'cpu',
173 choices=('cpu', 'cuda'),
174 help="Run Mitsuba on 'cuda' or 'cpu'")
175 parser.add_argument('--iterations',
176 type=int,
177 default=40,
178 help="Number of iterations")
179 parser.add_argument(
180 '--total-variation',
181 type=float,
182 default=0.01,
183 help="Factor to apply to total_variation loss. 0.0 disables TV")
184
185 if len(sys.argv) < 2:
186 parser.print_help(sys.stderr)
187 sys.exit(1)
188 args = parser.parse_args()
189 print("Arguments: ", vars(args))
190
191 # Initialize Mitsuba
192 if args.device == 'cpu':
193 mi.set_variant('llvm_ad_rgb')
194 else:
195 mi.set_variant('cuda_ad_rgb')
196
197 # Confirm that the 3 required inputs exist
198 object_path = args.object_path
199 object_name = object_path.stem
200 datadir = args.object_path.parent
201 camera_pose = datadir / (object_name + '.npz')
202 input_image = datadir / (object_name + '.png')
203 if not object_path.exists():
204 print(f'{object_path} does not exist!')
205 sys.exit()
206 if not camera_pose.exists():
207 print(f'{camera_pose} does not exist!')
208 sys.exit()
209 if not input_image.exists():
210 print(f'{input_image} does not exist!')
211 sys.exit()
212
213 # Load input data
214 mesh, cam_info, input_image = load_input_data(object_path, camera_pose,
215 input_image, args.tex_width)
216
217 # Estimate albedo map
218 print('Running material estimation...')
219 albedo, envmap = run_estimation(mesh, cam_info, input_image, args.env_width,
220 args.iterations, args.total_variation)
221
222 # Save maps
223 def save_image(img, name, output_dir):
224 # scale to 0-255
225 texture = o3d.core.Tensor(img * 255.0).to(o3d.core.Dtype.UInt8)
226 texture = o3d.t.geometry.Image(texture)
227 o3d.t.io.write_image(str(output_dir / name), texture)
228
229 print('Saving final results...')
230 save_image(albedo, 'estimated_albedo.png', datadir)
231 mi.Bitmap(envmap).write(str(datadir / 'predicted_envmap.exr'))
232
233 # Visualize result with Open3D
234 mesh.material.texture_maps['albedo'] = o3d.t.io.read_image(
235 str(datadir / 'estimated_albedo.png'))
236 o3d.visualization.draw(mesh)
mouse_and_point_coord.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import numpy as np
9import open3d as o3d
10import open3d.visualization.gui as gui
11import open3d.visualization.rendering as rendering
12
13
14# This example displays a point cloud and if you Ctrl-click on a point
15# (Cmd-click on macOS) it will show the coordinates of the point.
16# This example illustrates:
17# - custom mouse handling on SceneWidget
18# - getting a the depth value of a point (OpenGL depth)
19# - converting from a window point + OpenGL depth to world coordinate
20class ExampleApp:
21
22 def __init__(self, cloud):
23 # We will create a SceneWidget that fills the entire window, and then
24 # a label in the lower left on top of the SceneWidget to display the
25 # coordinate.
26 app = gui.Application.instance
27 self.window = app.create_window("Open3D - GetCoord Example", 1024, 768)
28 # Since we want the label on top of the scene, we cannot use a layout,
29 # so we need to manually layout the window's children.
30 self.window.set_on_layout(self._on_layout)
31 self.widget3d = gui.SceneWidget()
32 self.window.add_child(self.widget3d)
33 self.info = gui.Label("")
34 self.info.visible = False
35 self.window.add_child(self.info)
36
37 self.widget3d.scene = rendering.Open3DScene(self.window.renderer)
38
39 mat = rendering.MaterialRecord()
40 mat.shader = "defaultUnlit"
41 # Point size is in native pixels, but "pixel" means different things to
42 # different platforms (macOS, in particular), so multiply by Window scale
43 # factor.
44 mat.point_size = 3 * self.window.scaling
45 self.widget3d.scene.add_geometry("Point Cloud", cloud, mat)
46
47 bounds = self.widget3d.scene.bounding_box
48 center = bounds.get_center()
49 self.widget3d.setup_camera(60, bounds, center)
50 self.widget3d.look_at(center, center - [0, 0, 3], [0, -1, 0])
51
52 self.widget3d.set_on_mouse(self._on_mouse_widget3d)
53
54 def _on_layout(self, layout_context):
55 r = self.window.content_rect
56 self.widget3d.frame = r
57 pref = self.info.calc_preferred_size(layout_context,
58 gui.Widget.Constraints())
59 self.info.frame = gui.Rect(r.x,
60 r.get_bottom() - pref.height, pref.width,
61 pref.height)
62
63 def _on_mouse_widget3d(self, event):
64 # We could override BUTTON_DOWN without a modifier, but that would
65 # interfere with manipulating the scene.
66 if event.type == gui.MouseEvent.Type.BUTTON_DOWN and event.is_modifier_down(
67 gui.KeyModifier.CTRL):
68
69 def depth_callback(depth_image):
70 # Coordinates are expressed in absolute coordinates of the
71 # window, but to dereference the image correctly we need them
72 # relative to the origin of the widget. Note that even if the
73 # scene widget is the only thing in the window, if a menubar
74 # exists it also takes up space in the window (except on macOS).
75 x = event.x - self.widget3d.frame.x
76 y = event.y - self.widget3d.frame.y
77 # Note that np.asarray() reverses the axes.
78 depth = np.asarray(depth_image)[y, x]
79
80 if depth == 1.0: # clicked on nothing (i.e. the far plane)
81 text = ""
82 else:
83 world = self.widget3d.scene.camera.unproject(
84 x, y, depth, self.widget3d.frame.width,
85 self.widget3d.frame.height)
86 text = "({:.3f}, {:.3f}, {:.3f})".format(
87 world[0], world[1], world[2])
88
89 # This is not called on the main thread, so we need to
90 # post to the main thread to safely access UI items.
91 def update_label():
92 self.info.text = text
93 self.info.visible = (text != "")
94 # We are sizing the info label to be exactly the right size,
95 # so since the text likely changed width, we need to
96 # re-layout to set the new frame.
97 self.window.set_needs_layout()
98
99 gui.Application.instance.post_to_main_thread(
100 self.window, update_label)
101
102 self.widget3d.scene.scene.render_to_depth_image(depth_callback)
103 return gui.Widget.EventCallbackResult.HANDLED
104 return gui.Widget.EventCallbackResult.IGNORED
105
106
107def main():
108 app = gui.Application.instance
109 app.initialize()
110
111 # This example will also work with a triangle mesh, or any 3D object.
112 # If you use a triangle mesh you will probably want to set the material
113 # shader to "defaultLit" instead of "defaultUnlit".
114 pcd_data = o3d.data.DemoICPPointClouds()
115 cloud = o3d.io.read_point_cloud(pcd_data.paths[0])
116 ex = ExampleApp(cloud)
117
118 app.run()
119
120
121if __name__ == "__main__":
122 main()
multiple_windows.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import numpy as np
9import open3d as o3d
10import threading
11import time
12
13CLOUD_NAME = "points"
14
15
16def main():
17 MultiWinApp().run()
18
19
20class MultiWinApp:
21
22 def __init__(self):
23 self.is_done = False
24 self.n_snapshots = 0
25 self.cloud = None
26 self.main_vis = None
27 self.snapshot_pos = None
28
29 def run(self):
30 app = o3d.visualization.gui.Application.instance
31 app.initialize()
32
33 self.main_vis = o3d.visualization.O3DVisualizer(
34 "Open3D - Multi-Window Demo")
35 self.main_vis.add_action("Take snapshot in new window",
36 self.on_snapshot)
37 self.main_vis.set_on_close(self.on_main_window_closing)
38
39 app.add_window(self.main_vis)
40 self.snapshot_pos = (self.main_vis.os_frame.x, self.main_vis.os_frame.y)
41
42 threading.Thread(target=self.update_thread).start()
43
44 app.run()
45
46 def on_snapshot(self, vis):
47 self.n_snapshots += 1
48 self.snapshot_pos = (self.snapshot_pos[0] + 50,
49 self.snapshot_pos[1] + 50)
50 title = "Open3D - Multi-Window Demo (Snapshot #" + str(
51 self.n_snapshots) + ")"
52 new_vis = o3d.visualization.O3DVisualizer(title)
53 mat = o3d.visualization.rendering.MaterialRecord()
54 mat.shader = "defaultUnlit"
55 new_vis.add_geometry(CLOUD_NAME + " #" + str(self.n_snapshots),
56 self.cloud, mat)
57 new_vis.reset_camera_to_default()
58 bounds = self.cloud.get_axis_aligned_bounding_box()
59 extent = bounds.get_extent()
60 new_vis.setup_camera(60, bounds.get_center(),
61 bounds.get_center() + [0, 0, -3], [0, -1, 0])
62 o3d.visualization.gui.Application.instance.add_window(new_vis)
63 new_vis.os_frame = o3d.visualization.gui.Rect(self.snapshot_pos[0],
64 self.snapshot_pos[1],
65 new_vis.os_frame.width,
66 new_vis.os_frame.height)
67
68 def on_main_window_closing(self):
69 self.is_done = True
70 return True # False would cancel the close
71
72 def update_thread(self):
73 # This is NOT the UI thread, need to call post_to_main_thread() to update
74 # the scene or any part of the UI.
75 pcd_data = o3d.data.DemoICPPointClouds()
76 self.cloud = o3d.io.read_point_cloud(pcd_data.paths[0])
77 bounds = self.cloud.get_axis_aligned_bounding_box()
78 extent = bounds.get_extent()
79
80 def add_first_cloud():
81 mat = o3d.visualization.rendering.MaterialRecord()
82 mat.shader = "defaultUnlit"
83 self.main_vis.add_geometry(CLOUD_NAME, self.cloud, mat)
84 self.main_vis.reset_camera_to_default()
85 self.main_vis.setup_camera(60, bounds.get_center(),
86 bounds.get_center() + [0, 0, -3],
87 [0, -1, 0])
88
89 o3d.visualization.gui.Application.instance.post_to_main_thread(
90 self.main_vis, add_first_cloud)
91
92 while not self.is_done:
93 time.sleep(0.1)
94
95 # Perturb the cloud with a random walk to simulate an actual read
96 pts = np.asarray(self.cloud.points)
97 magnitude = 0.005 * extent
98 displacement = magnitude * (np.random.random_sample(pts.shape) -
99 0.5)
100 new_pts = pts + displacement
101 self.cloud.points = o3d.utility.Vector3dVector(new_pts)
102
103 def update_cloud():
104 # Note: if the number of points is less than or equal to the
105 # number of points in the original object that was added,
106 # using self.scene.update_geometry() will be faster.
107 # Requires that the point cloud be a t.PointCloud.
108 self.main_vis.remove_geometry(CLOUD_NAME)
109 mat = o3d.visualization.rendering.MaterialRecord()
110 mat.shader = "defaultUnlit"
111 self.main_vis.add_geometry(CLOUD_NAME, self.cloud, mat)
112
113 if self.is_done: # might have changed while sleeping
114 break
115 o3d.visualization.gui.Application.instance.post_to_main_thread(
116 self.main_vis, update_cloud)
117
118
119if __name__ == "__main__":
120 main()
non_blocking_visualization.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8# examples/python/visualization/non_blocking_visualization.py
9
10import open3d as o3d
11import numpy as np
12
13
14def prepare_data():
15 pcd_data = o3d.data.DemoICPPointClouds()
16 source_raw = o3d.io.read_point_cloud(pcd_data.paths[0])
17 target_raw = o3d.io.read_point_cloud(pcd_data.paths[1])
18 source = source_raw.voxel_down_sample(voxel_size=0.02)
19 target = target_raw.voxel_down_sample(voxel_size=0.02)
20
21 trans = [[0.862, 0.011, -0.507, 0.0], [-0.139, 0.967, -0.215, 0.7],
22 [0.487, 0.255, 0.835, -1.4], [0.0, 0.0, 0.0, 1.0]]
23 source.transform(trans)
24 flip_transform = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
25 source.transform(flip_transform)
26 target.transform(flip_transform)
27 return source, target
28
29
30def demo_non_blocking_visualization():
31 o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
32
33 source, target = prepare_data()
34 vis = o3d.visualization.Visualizer()
35 vis.create_window()
36 vis.add_geometry(source)
37 vis.add_geometry(target)
38 threshold = 0.05
39 icp_iteration = 100
40 save_image = False
41
42 for i in range(icp_iteration):
43 reg_p2l = o3d.pipelines.registration.registration_icp(
44 source, target, threshold, np.identity(4),
45 o3d.pipelines.registration.TransformationEstimationPointToPlane(),
46 o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=1))
47 source.transform(reg_p2l.transformation)
48 vis.update_geometry(source)
49 vis.poll_events()
50 vis.update_renderer()
51 if save_image:
52 vis.capture_screen_image("temp_%04d.jpg" % i)
53 vis.destroy_window()
54
55 o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Info)
56
57
58if __name__ == '__main__':
59 demo_non_blocking_visualization()
non_english.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d.visualization.gui as gui
9import os.path
10import platform
11
12basedir = os.path.dirname(os.path.realpath(__file__))
13
14# This is all-widgets.py with some modifications for non-English languages.
15# Please see all-widgets.py for usage of the GUI widgets
16
17MODE_SERIF = "serif"
18MODE_COMMON_HANYU = "common"
19MODE_SERIF_AND_COMMON_HANYU = "serif+common"
20MODE_COMMON_HANYU_EN = "hanyu_en+common"
21MODE_ALL_HANYU = "all"
22MODE_CUSTOM_CHARS = "custom"
23
24#mode = MODE_SERIF
25#mode = MODE_COMMON_HANYU
26mode = MODE_SERIF_AND_COMMON_HANYU
27#mode = MODE_ALL_HANYU
28#mode = MODE_CUSTOM_CHARS
29
30# Fonts can be names or paths
31if platform.system() == "Darwin":
32 serif = "Times New Roman"
33 hanzi = "STHeiti Light"
34 chess = "/System/Library/Fonts/Apple Symbols.ttf"
35elif platform.system() == "Windows":
36 # it is necessary to specify paths on Windows since it stores its fonts
37 # with a cryptic name, so font name searches do not work on Windows
38 serif = "c:/windows/fonts/times.ttf" # Times New Roman
39 hanzi = "c:/windows/fonts/msyh.ttc" # YaHei UI
40 chess = "c:/windows/fonts/seguisym.ttf" # Segoe UI Symbol
41else:
42 # Assumes Ubuntu 18.04
43 serif = "DejaVuSerif"
44 hanzi = "NotoSansCJK"
45 chess = "/usr/share/fonts/truetype/freefont/FreeSerif.ttf"
46
47
48def main():
49 gui.Application.instance.initialize()
50
51 # Font changes must be done after initialization but before creating
52 # a window.
53
54 # MODE_SERIF changes the English font; Chinese will not be displayed
55 font = None
56 if mode == MODE_SERIF:
57 font = gui.FontDescription(serif)
58 # MODE_COMMON_HANYU uses the default English font and adds common Chinese
59 elif mode == MODE_COMMON_HANYU:
60 font = gui.FontDescription()
61 font.add_typeface_for_language(hanzi, "zh")
62 # MODE_SERIF_AND_COMMON_HANYU uses a serif English font and adds common
63 # Chinese characters
64 elif mode == MODE_SERIF_AND_COMMON_HANYU:
65 font = gui.FontDescription(serif)
66 font.add_typeface_for_language(hanzi, "zh")
67 # MODE_COMMON_HANYU_EN the Chinese font for both English and the common
68 # characters
69 elif mode == MODE_COMMON_HANYU_EN:
70 font = gui.FontDescription(hanzi)
71 font.add_typeface_for_language(hanzi, "zh")
72 # MODE_ALL_HANYU uses the default English font but includes all the Chinese
73 # characters (which uses a substantial amount of memory)
74 elif mode == MODE_ALL_HANYU:
75 font = gui.FontDescription()
76 font.add_typeface_for_language(hanzi, "zh_all")
77 elif mode == MODE_CUSTOM_CHARS:
78 range = [0x2654, 0x2655, 0x2656, 0x2657, 0x2658, 0x2659]
79 font = gui.FontDescription()
80 font.add_typeface_for_code_points(chess, range)
81
82 if font is not None:
83 gui.Application.instance.set_font(gui.Application.DEFAULT_FONT_ID, font)
84
85 w = ExampleWindow()
86 gui.Application.instance.run()
87
88
89class ExampleWindow:
90 MENU_CHECKABLE = 1
91 MENU_DISABLED = 2
92 MENU_QUIT = 3
93
94 def __init__(self):
95 self.window = gui.Application.instance.create_window("Test", 400, 768)
96 # self.window = gui.Application.instance.create_window("Test", 400, 768,
97 # x=50, y=100)
98 w = self.window # for more concise code
99
100 # Rather than specifying sizes in pixels, which may vary in size based
101 # on the monitor, especially on macOS which has 220 dpi monitors, use
102 # the em-size. This way sizings will be proportional to the font size,
103 # which will create a more visually consistent size across platforms.
104 em = w.theme.font_size
105
106 # Widgets are laid out in layouts: gui.Horiz, gui.Vert,
107 # gui.CollapsableVert, and gui.VGrid. By nesting the layouts we can
108 # achieve complex designs. Usually we use a vertical layout as the
109 # topmost widget, since widgets tend to be organized from top to bottom.
110 # Within that, we usually have a series of horizontal layouts for each
111 # row.
112 layout = gui.Vert(0, gui.Margins(0.5 * em, 0.5 * em, 0.5 * em,
113 0.5 * em))
114
115 # Create the menu. The menu is global (because the macOS menu is global),
116 # so only create it once.
117 if gui.Application.instance.menubar is None:
118 menubar = gui.Menu()
119 test_menu = gui.Menu()
120 test_menu.add_item("An option", ExampleWindow.MENU_CHECKABLE)
121 test_menu.set_checked(ExampleWindow.MENU_CHECKABLE, True)
122 test_menu.add_item("Unavailable feature",
123 ExampleWindow.MENU_DISABLED)
124 test_menu.set_enabled(ExampleWindow.MENU_DISABLED, False)
125 test_menu.add_separator()
126 test_menu.add_item("Quit", ExampleWindow.MENU_QUIT)
127 # On macOS the first menu item is the application menu item and will
128 # always be the name of the application (probably "Python"),
129 # regardless of what you pass in here. The application menu is
130 # typically where About..., Preferences..., and Quit go.
131 menubar.add_menu("Test", test_menu)
132 gui.Application.instance.menubar = menubar
133
134 # Each window needs to know what to do with the menu items, so we need
135 # to tell the window how to handle menu items.
136 w.set_on_menu_item_activated(ExampleWindow.MENU_CHECKABLE,
137 self._on_menu_checkable)
138 w.set_on_menu_item_activated(ExampleWindow.MENU_QUIT,
139 self._on_menu_quit)
140
141 # Create a file-chooser widget. One part will be a text edit widget for
142 # the filename and clicking on the button will let the user choose using
143 # the file dialog.
144 self._fileedit = gui.TextEdit()
145 filedlgbutton = gui.Button("...")
146 filedlgbutton.horizontal_padding_em = 0.5
147 filedlgbutton.vertical_padding_em = 0
148 filedlgbutton.set_on_clicked(self._on_filedlg_button)
149
150 # (Create the horizontal widget for the row. This will make sure the
151 # text editor takes up as much space as it can.)
152 fileedit_layout = gui.Horiz()
153 fileedit_layout.add_child(gui.Label("Model file"))
154 fileedit_layout.add_child(self._fileedit)
155 fileedit_layout.add_fixed(0.25 * em)
156 fileedit_layout.add_child(filedlgbutton)
157 # add to the top-level (vertical) layout
158 layout.add_child(fileedit_layout)
159
160 # Create a collapsible vertical widget, which takes up enough vertical
161 # space for all its children when open, but only enough for text when
162 # closed. This is useful for property pages, so the user can hide sets
163 # of properties they rarely use. All layouts take a spacing parameter,
164 # which is the spacinging between items in the widget, and a margins
165 # parameter, which specifies the spacing of the left, top, right,
166 # bottom margins. (This acts like the 'padding' property in CSS.)
167 collapse = gui.CollapsableVert("Widgets", 0.33 * em,
168 gui.Margins(em, 0, 0, 0))
169 if mode == MODE_CUSTOM_CHARS:
170 self._label = gui.Label("♔♕♖♗♘♙")
171 elif mode == MODE_ALL_HANYU:
172 self._label = gui.Label("天地玄黃,宇宙洪荒。日月盈昃,辰宿列張。")
173 else:
174 self._label = gui.Label("锄禾日当午,汗滴禾下土。谁知盘中餐,粒粒皆辛苦。")
175 self._label.text_color = gui.Color(1.0, 0.5, 0.0)
176 collapse.add_child(self._label)
177
178 # Create a checkbox. Checking or unchecking would usually be used to set
179 # a binary property, but in this case it will show a simple message box,
180 # which illustrates how to create simple dialogs.
181 cb = gui.Checkbox("Enable some really cool effect")
182 cb.set_on_checked(self._on_cb) # set the callback function
183 collapse.add_child(cb)
184
185 # Create a color editor. We will change the color of the orange label
186 # above when the color changes.
187 color = gui.ColorEdit()
188 color.color_value = self._label.text_color
189 color.set_on_value_changed(self._on_color)
190 collapse.add_child(color)
191
192 # This is a combobox, nothing fancy here, just set a simple function to
193 # handle the user selecting an item.
194 combo = gui.Combobox()
195 combo.add_item("Show point labels")
196 combo.add_item("Show point velocity")
197 combo.add_item("Show bounding boxes")
198 combo.set_on_selection_changed(self._on_combo)
199 collapse.add_child(combo)
200
201 # Add a simple image
202 logo = gui.ImageWidget(basedir + "/icon-32.png")
203 collapse.add_child(logo)
204
205 # Add a list of items
206 lv = gui.ListView()
207 lv.set_items(["Ground", "Trees", "Buildings" "Cars", "People"])
208 lv.selected_index = lv.selected_index + 2 # initially is -1, so now 1
209 lv.set_on_selection_changed(self._on_list)
210 collapse.add_child(lv)
211
212 # Add a tree view
213 tree = gui.TreeView()
214 tree.add_text_item(tree.get_root_item(), "Camera")
215 geo_id = tree.add_text_item(tree.get_root_item(), "Geometries")
216 mesh_id = tree.add_text_item(geo_id, "Mesh")
217 tree.add_text_item(mesh_id, "Triangles")
218 tree.add_text_item(mesh_id, "Albedo texture")
219 tree.add_text_item(mesh_id, "Normal map")
220 points_id = tree.add_text_item(geo_id, "Points")
221 tree.can_select_items_with_children = True
222 tree.set_on_selection_changed(self._on_tree)
223 # does not call on_selection_changed: user did not change selection
224 tree.selected_item = points_id
225 collapse.add_child(tree)
226
227 # Add two number editors, one for integers and one for floating point
228 # Number editor can clamp numbers to a range, although this is more
229 # useful for integers than for floating point.
230 intedit = gui.NumberEdit(gui.NumberEdit.INT)
231 intedit.int_value = 0
232 intedit.set_limits(1, 19) # value coerced to 1
233 intedit.int_value = intedit.int_value + 2 # value should be 3
234 doubleedit = gui.NumberEdit(gui.NumberEdit.DOUBLE)
235 numlayout = gui.Horiz()
236 numlayout.add_child(gui.Label("int"))
237 numlayout.add_child(intedit)
238 numlayout.add_fixed(em) # manual spacing (could set it in Horiz() ctor)
239 numlayout.add_child(gui.Label("double"))
240 numlayout.add_child(doubleedit)
241 collapse.add_child(numlayout)
242
243 # Create a progress bar. It ranges from 0.0 to 1.0.
244 self._progress = gui.ProgressBar()
245 self._progress.value = 0.25 # 25% complete
246 self._progress.value = self._progress.value + 0.08 # 0.25 + 0.08 = 33%
247 prog_layout = gui.Horiz(em)
248 prog_layout.add_child(gui.Label("Progress..."))
249 prog_layout.add_child(self._progress)
250 collapse.add_child(prog_layout)
251
252 # Create a slider. It acts very similar to NumberEdit except that the
253 # user moves a slider and cannot type the number.
254 slider = gui.Slider(gui.Slider.INT)
255 slider.set_limits(5, 13)
256 slider.set_on_value_changed(self._on_slider)
257 collapse.add_child(slider)
258
259 # Create a text editor. The placeholder text (if not empty) will be
260 # displayed when there is no text, as concise help, or visible tooltip.
261 tedit = gui.TextEdit()
262 tedit.placeholder_text = "Edit me some text here"
263
264 # on_text_changed fires whenever the user changes the text (but not if
265 # the text_value property is assigned to).
266 tedit.set_on_text_changed(self._on_text_changed)
267
268 # on_value_changed fires whenever the user signals that they are finished
269 # editing the text, either by pressing return or by clicking outside of
270 # the text editor, thus losing text focus.
271 tedit.set_on_value_changed(self._on_value_changed)
272 collapse.add_child(tedit)
273
274 # Create a widget for showing/editing a 3D vector
275 vedit = gui.VectorEdit()
276 vedit.vector_value = [1, 2, 3]
277 vedit.set_on_value_changed(self._on_vedit)
278 collapse.add_child(vedit)
279
280 # Create a VGrid layout. This layout specifies the number of columns
281 # (two, in this case), and will place the first child in the first
282 # column, the second in the second, the third in the first, the fourth
283 # in the second, etc.
284 # So:
285 # 2 cols 3 cols 4 cols
286 # | 1 | 2 | | 1 | 2 | 3 | | 1 | 2 | 3 | 4 |
287 # | 3 | 4 | | 4 | 5 | 6 | | 5 | 6 | 7 | 8 |
288 # | 5 | 6 | | 7 | 8 | 9 | | 9 | 10 | 11 | 12 |
289 # | ... | | ... | | ... |
290 vgrid = gui.VGrid(2)
291 vgrid.add_child(gui.Label("Trees"))
292 vgrid.add_child(gui.Label("12 items"))
293 vgrid.add_child(gui.Label("People"))
294 vgrid.add_child(gui.Label("2 (93% certainty)"))
295 vgrid.add_child(gui.Label("Cars"))
296 vgrid.add_child(gui.Label("5 (87% certainty)"))
297 collapse.add_child(vgrid)
298
299 # Create a tab control. This is really a set of N layouts on top of each
300 # other, but with only one selected.
301 tabs = gui.TabControl()
302 tab1 = gui.Vert()
303 tab1.add_child(gui.Checkbox("Enable option 1"))
304 tab1.add_child(gui.Checkbox("Enable option 2"))
305 tab1.add_child(gui.Checkbox("Enable option 3"))
306 tabs.add_tab("Options", tab1)
307 tab2 = gui.Vert()
308 tab2.add_child(gui.Label("No plugins detected"))
309 tab2.add_stretch()
310 tabs.add_tab("Plugins", tab2)
311 collapse.add_child(tabs)
312
313 # Quit button. (Typically this is a menu item)
314 button_layout = gui.Horiz()
315 ok_button = gui.Button("Ok")
316 ok_button.set_on_clicked(self._on_ok)
317 button_layout.add_stretch()
318 button_layout.add_child(ok_button)
319
320 layout.add_child(collapse)
321 layout.add_child(button_layout)
322
323 # We're done, set the window's layout
324 w.add_child(layout)
325
326 def _on_filedlg_button(self):
327 filedlg = gui.FileDialog(gui.FileDialog.OPEN, "Select file",
328 self.window.theme)
329 filedlg.add_filter(".obj .ply .stl", "Triangle mesh (.obj, .ply, .stl)")
330 filedlg.add_filter("", "All files")
331 filedlg.set_on_cancel(self._on_filedlg_cancel)
332 filedlg.set_on_done(self._on_filedlg_done)
333 self.window.show_dialog(filedlg)
334
335 def _on_filedlg_cancel(self):
336 self.window.close_dialog()
337
338 def _on_filedlg_done(self, path):
339 self._fileedit.text_value = path
340 self.window.close_dialog()
341
342 def _on_cb(self, is_checked):
343 if is_checked:
344 text = "Sorry, effects are unimplemented"
345 else:
346 text = "Good choice"
347
348 self.show_message_dialog("There might be a problem...", text)
349
350 # This function is essentially the same as window.show_message_box(),
351 # so for something this simple just use that, but it illustrates making a
352 # dialog.
353 def show_message_dialog(self, title, message):
354 # A Dialog is just a widget, so you make its child a layout just like
355 # a Window.
356 dlg = gui.Dialog(title)
357
358 # Add the message text
359 em = self.window.theme.font_size
360 dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
361 dlg_layout.add_child(gui.Label(message))
362
363 # Add the Ok button. We need to define a callback function to handle
364 # the click.
365 ok_button = gui.Button("Ok")
366 ok_button.set_on_clicked(self._on_dialog_ok)
367
368 # We want the Ok button to be an the right side, so we need to add
369 # a stretch item to the layout, otherwise the button will be the size
370 # of the entire row. A stretch item takes up as much space as it can,
371 # which forces the button to be its minimum size.
372 button_layout = gui.Horiz()
373 button_layout.add_stretch()
374 button_layout.add_child(ok_button)
375
376 # Add the button layout,
377 dlg_layout.add_child(button_layout)
378 # ... then add the layout as the child of the Dialog
379 dlg.add_child(dlg_layout)
380 # ... and now we can show the dialog
381 self.window.show_dialog(dlg)
382
383 def _on_dialog_ok(self):
384 self.window.close_dialog()
385
386 def _on_color(self, new_color):
387 self._label.text_color = new_color
388
389 def _on_combo(self, new_val, new_idx):
390 print(new_idx, new_val)
391
392 def _on_list(self, new_val, is_dbl_click):
393 print(new_val)
394
395 def _on_tree(self, new_item_id):
396 print(new_item_id)
397
398 def _on_slider(self, new_val):
399 self._progress.value = new_val / 20.0
400
401 def _on_text_changed(self, new_text):
402 print("edit:", new_text)
403
404 def _on_value_changed(self, new_text):
405 print("value:", new_text)
406
407 def _on_vedit(self, new_val):
408 print(new_val)
409
410 def _on_ok(self):
411 gui.Application.instance.quit()
412
413 def _on_menu_checkable(self):
414 gui.Application.instance.menubar.set_checked(
415 ExampleWindow.MENU_CHECKABLE,
416 not gui.Application.instance.menubar.is_checked(
417 ExampleWindow.MENU_CHECKABLE))
418
419 def _on_menu_quit(self):
420 gui.Application.instance.quit()
421
422
423# This class is essentially the same as window.show_message_box(),
424# so for something this simple just use that, but it illustrates making a
425# dialog.
426class MessageBox:
427
428 def __init__(self, title, message):
429 self._window = None
430
431 # A Dialog is just a widget, so you make its child a layout just like
432 # a Window.
433 dlg = gui.Dialog(title)
434
435 # Add the message text
436 em = self.window.theme.font_size
437 dlg_layout = gui.Vert(em, gui.Margins(em, em, em, em))
438 dlg_layout.add_child(gui.Label(message))
439
440 # Add the Ok button. We need to define a callback function to handle
441 # the click.
442 ok_button = gui.Button("Ok")
443 ok_button.set_on_clicked(self._on_ok)
444
445 # We want the Ok button to be an the right side, so we need to add
446 # a stretch item to the layout, otherwise the button will be the size
447 # of the entire row. A stretch item takes up as much space as it can,
448 # which forces the button to be its minimum size.
449 button_layout = gui.Horiz()
450 button_layout.add_stretch()
451 button_layout.add_child(ok_button)
452
453 # Add the button layout,
454 dlg_layout.add_child(button_layout)
455 # ... then add the layout as the child of the Dialog
456 dlg.add_child(dlg_layout)
457
458 def show(self, window):
459 self._window = window
460
461 def _on_ok(self):
462 self._window.close_dialog()
463
464
465if __name__ == "__main__":
466 main()
online_processing.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7"""Online 3D depth video processing pipeline.
8
9- Connects to a RGBD camera or RGBD video file (currently
10 RealSense camera and bag file format are supported).
11- Captures / reads color and depth frames. Allow recording from camera.
12- Convert frames to point cloud, optionally with normals.
13- Visualize point cloud video and results.
14- Save point clouds and RGBD images for selected frames.
15
16For this example, Open3D must be built with -DBUILD_LIBREALSENSE=ON
17"""
18
19import os
20import json
21import time
22import logging as log
23import argparse
24import threading
25from datetime import datetime
26from concurrent.futures import ThreadPoolExecutor
27import numpy as np
28import open3d as o3d
29import open3d.visualization.gui as gui
30import open3d.visualization.rendering as rendering
31
32
33# Camera and processing
34class PipelineModel:
35 """Controls IO (camera, video file, recording, saving frames). Methods run
36 in worker threads."""
37
38 def __init__(self,
39 update_view,
40 camera_config_file=None,
41 rgbd_video=None,
42 device=None):
43 """Initialize.
44
45 Args:
46 update_view (callback): Callback to update display elements for a
47 frame.
48 camera_config_file (str): Camera configuration json file.
49 rgbd_video (str): RS bag file containing the RGBD video. If this is
50 provided, connected cameras are ignored.
51 device (str): Compute device (e.g.: 'cpu:0' or 'cuda:0').
52 """
53 self.update_view = update_view
54 if device:
55 self.device = device.lower()
56 else:
57 self.device = 'cuda:0' if o3d.core.cuda.is_available() else 'cpu:0'
58 self.o3d_device = o3d.core.Device(self.device)
59
60 self.video = None
61 self.camera = None
62 self.flag_capture = False
63 self.cv_capture = threading.Condition() # condition variable
64 self.recording = False # Are we currently recording
65 self.flag_record = False # Request to start/stop recording
66 if rgbd_video: # Video file
67 self.video = o3d.t.io.RGBDVideoReader.create(rgbd_video)
68 self.rgbd_metadata = self.video.metadata
69 self.status_message = f"Video {rgbd_video} opened."
70
71 else: # RGBD camera
72 now = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
73 filename = f"{now}.bag"
74 self.camera = o3d.t.io.RealSenseSensor()
75 if camera_config_file:
76 with open(camera_config_file) as ccf:
77 self.camera.init_sensor(o3d.t.io.RealSenseSensorConfig(
78 json.load(ccf)),
79 filename=filename)
80 else:
81 self.camera.init_sensor(filename=filename)
82 self.camera.start_capture(start_record=False)
83 self.rgbd_metadata = self.camera.get_metadata()
84 self.status_message = f"Camera {self.rgbd_metadata.serial_number} opened."
85
86 log.info(self.rgbd_metadata)
87
88 # RGBD -> PCD
89 self.extrinsics = o3d.core.Tensor.eye(4,
90 dtype=o3d.core.Dtype.Float32,
91 device=self.o3d_device)
92 self.intrinsic_matrix = o3d.core.Tensor(
93 self.rgbd_metadata.intrinsics.intrinsic_matrix,
94 dtype=o3d.core.Dtype.Float32,
95 device=self.o3d_device)
96 self.depth_max = 3.0 # m
97 self.pcd_stride = 2 # downsample point cloud, may increase frame rate
98 self.flag_normals = False
99 self.flag_save_rgbd = False
100 self.flag_save_pcd = False
101
102 self.pcd_frame = None
103 self.rgbd_frame = None
104 self.executor = ThreadPoolExecutor(max_workers=3,
105 thread_name_prefix='Capture-Save')
106 self.flag_exit = False
107
108 @property
109 def max_points(self):
110 """Max points in one frame for the camera or RGBD video resolution."""
111 return self.rgbd_metadata.width * self.rgbd_metadata.height
112
113 @property
114 def vfov(self):
115 """Camera or RGBD video vertical field of view."""
116 return np.rad2deg(2 * np.arctan(self.intrinsic_matrix[1, 2].item() /
117 self.intrinsic_matrix[1, 1].item()))
118
119 def run(self):
120 """Run pipeline."""
121 n_pts = 0
122 frame_id = 0
123 t1 = time.perf_counter()
124 if self.video:
125 self.rgbd_frame = self.video.next_frame()
126 else:
127 self.rgbd_frame = self.camera.capture_frame(
128 wait=True, align_depth_to_color=True)
129
130 pcd_errors = 0
131 while (not self.flag_exit and
132 (self.video is None or # Camera
133 (self.video and not self.video.is_eof()))): # Video
134 if self.video:
135 future_rgbd_frame = self.executor.submit(self.video.next_frame)
136 else:
137 future_rgbd_frame = self.executor.submit(
138 self.camera.capture_frame,
139 wait=True,
140 align_depth_to_color=True)
141
142 if self.flag_save_pcd:
143 self.save_pcd()
144 self.flag_save_pcd = False
145 try:
146 self.rgbd_frame = self.rgbd_frame.to(self.o3d_device)
147 self.pcd_frame = o3d.t.geometry.PointCloud.create_from_rgbd_image(
148 self.rgbd_frame, self.intrinsic_matrix, self.extrinsics,
149 self.rgbd_metadata.depth_scale, self.depth_max,
150 self.pcd_stride, self.flag_normals)
151 depth_in_color = self.rgbd_frame.depth.colorize_depth(
152 self.rgbd_metadata.depth_scale, 0, self.depth_max)
153 except RuntimeError:
154 pcd_errors += 1
155
156 if self.pcd_frame.is_empty():
157 log.warning(f"No valid depth data in frame {frame_id})")
158 continue
159
160 n_pts += self.pcd_frame.point.positions.shape[0]
161 if frame_id % 60 == 0 and frame_id > 0:
162 t0, t1 = t1, time.perf_counter()
163 log.debug(f"\nframe_id = {frame_id}, \t {(t1-t0)*1000./60:0.2f}"
164 f"ms/frame \t {(t1-t0)*1e9/n_pts} ms/Mp\t")
165 n_pts = 0
166 frame_elements = {
167 'color': self.rgbd_frame.color.cpu(),
168 'depth': depth_in_color.cpu(),
169 'pcd': self.pcd_frame.cpu(),
170 'status_message': self.status_message
171 }
172 self.update_view(frame_elements)
173
174 if self.flag_save_rgbd:
175 self.save_rgbd()
176 self.flag_save_rgbd = False
177 self.rgbd_frame = future_rgbd_frame.result()
178 with self.cv_capture: # Wait for capture to be enabled
179 self.cv_capture.wait_for(
180 predicate=lambda: self.flag_capture or self.flag_exit)
181 self.toggle_record()
182 frame_id += 1
183
184 if self.camera:
185 self.camera.stop_capture()
186 else:
187 self.video.close()
188 self.executor.shutdown()
189 log.debug(f"create_from_depth_image() errors = {pcd_errors}")
190
191 def toggle_record(self):
192 if self.camera is not None:
193 if self.flag_record and not self.recording:
194 self.camera.resume_record()
195 self.recording = True
196 elif not self.flag_record and self.recording:
197 self.camera.pause_record()
198 self.recording = False
199
200 def save_pcd(self):
201 """Save current point cloud."""
202 now = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
203 filename = f"{self.rgbd_metadata.serial_number}_pcd_{now}.ply"
204 # Convert colors to uint8 for compatibility
205 self.pcd_frame.point.colors = (self.pcd_frame.point.colors * 255).to(
206 o3d.core.Dtype.UInt8)
207 self.executor.submit(o3d.t.io.write_point_cloud,
208 filename,
209 self.pcd_frame,
210 write_ascii=False,
211 compressed=True,
212 print_progress=False)
213 self.status_message = f"Saving point cloud to {filename}."
214
215 def save_rgbd(self):
216 """Save current RGBD image pair."""
217 now = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
218 filename = f"{self.rgbd_metadata.serial_number}_color_{now}.jpg"
219 self.executor.submit(o3d.t.io.write_image, filename,
220 self.rgbd_frame.color)
221 filename = f"{self.rgbd_metadata.serial_number}_depth_{now}.png"
222 self.executor.submit(o3d.t.io.write_image, filename,
223 self.rgbd_frame.depth)
224 self.status_message = (
225 f"Saving RGBD images to {filename[:-3]}.{{jpg,png}}.")
226
227
228class PipelineView:
229 """Controls display and user interface. All methods must run in the main thread."""
230
231 def __init__(self, vfov=60, max_pcd_vertices=1 << 20, **callbacks):
232 """Initialize.
233
234 Args:
235 vfov (float): Vertical field of view for the 3D scene.
236 max_pcd_vertices (int): Maximum point clud verties for which memory
237 is allocated.
238 callbacks (dict of kwargs): Callbacks provided by the controller
239 for various operations.
240 """
241
242 self.vfov = vfov
243 self.max_pcd_vertices = max_pcd_vertices
244
245 gui.Application.instance.initialize()
246 self.window = gui.Application.instance.create_window(
247 "Open3D || Online RGBD Video Processing", 1280, 960)
248 # Called on window layout (eg: resize)
249 self.window.set_on_layout(self.on_layout)
250 self.window.set_on_close(callbacks['on_window_close'])
251
252 self.pcd_material = o3d.visualization.rendering.MaterialRecord()
253 self.pcd_material.shader = "defaultLit"
254 # Set n_pixels displayed for each 3D point, accounting for HiDPI scaling
255 self.pcd_material.point_size = int(4 * self.window.scaling)
256
257 # 3D scene
258 self.pcdview = gui.SceneWidget()
259 self.window.add_child(self.pcdview)
260 self.pcdview.enable_scene_caching(
261 True) # makes UI _much_ more responsive
262 self.pcdview.scene = rendering.Open3DScene(self.window.renderer)
263 self.pcdview.scene.set_background([1, 1, 1, 1]) # White background
264 self.pcdview.scene.set_lighting(
265 rendering.Open3DScene.LightingProfile.SOFT_SHADOWS, [0, -6, 0])
266 # Point cloud bounds, depends on the sensor range
267 self.pcd_bounds = o3d.geometry.AxisAlignedBoundingBox([-3, -3, 0],
268 [3, 3, 6])
269 self.camera_view() # Initially look from the camera
270 em = self.window.theme.font_size
271
272 # Options panel
273 self.panel = gui.Vert(em, gui.Margins(em, em, em, em))
274 self.panel.preferred_width = int(360 * self.window.scaling)
275 self.window.add_child(self.panel)
276 toggles = gui.Horiz(em)
277 self.panel.add_child(toggles)
278
279 toggle_capture = gui.ToggleSwitch("Capture / Play")
280 toggle_capture.is_on = False
281 toggle_capture.set_on_clicked(
282 callbacks['on_toggle_capture']) # callback
283 toggles.add_child(toggle_capture)
284
285 self.flag_normals = False
286 self.toggle_normals = gui.ToggleSwitch("Colors / Normals")
287 self.toggle_normals.is_on = False
288 self.toggle_normals.set_on_clicked(
289 callbacks['on_toggle_normals']) # callback
290 toggles.add_child(self.toggle_normals)
291
292 view_buttons = gui.Horiz(em)
293 self.panel.add_child(view_buttons)
294 view_buttons.add_stretch() # for centering
295 camera_view = gui.Button("Camera view")
296 camera_view.set_on_clicked(self.camera_view) # callback
297 view_buttons.add_child(camera_view)
298 birds_eye_view = gui.Button("Bird's eye view")
299 birds_eye_view.set_on_clicked(self.birds_eye_view) # callback
300 view_buttons.add_child(birds_eye_view)
301 view_buttons.add_stretch() # for centering
302
303 save_toggle = gui.Horiz(em)
304 self.panel.add_child(save_toggle)
305 save_toggle.add_child(gui.Label("Record / Save"))
306 self.toggle_record = None
307 if callbacks['on_toggle_record'] is not None:
308 save_toggle.add_fixed(1.5 * em)
309 self.toggle_record = gui.ToggleSwitch("Video")
310 self.toggle_record.is_on = False
311 self.toggle_record.set_on_clicked(callbacks['on_toggle_record'])
312 save_toggle.add_child(self.toggle_record)
313
314 save_buttons = gui.Horiz(em)
315 self.panel.add_child(save_buttons)
316 save_buttons.add_stretch() # for centering
317 save_pcd = gui.Button("Save Point cloud")
318 save_pcd.set_on_clicked(callbacks['on_save_pcd'])
319 save_buttons.add_child(save_pcd)
320 save_rgbd = gui.Button("Save RGBD frame")
321 save_rgbd.set_on_clicked(callbacks['on_save_rgbd'])
322 save_buttons.add_child(save_rgbd)
323 save_buttons.add_stretch() # for centering
324
325 self.video_size = (int(240 * self.window.scaling),
326 int(320 * self.window.scaling), 3)
327 self.show_color = gui.CollapsableVert("Color image")
328 self.show_color.set_is_open(False)
329 self.panel.add_child(self.show_color)
330 self.color_video = gui.ImageWidget(
331 o3d.geometry.Image(np.zeros(self.video_size, dtype=np.uint8)))
332 self.show_color.add_child(self.color_video)
333 self.show_depth = gui.CollapsableVert("Depth image")
334 self.show_depth.set_is_open(False)
335 self.panel.add_child(self.show_depth)
336 self.depth_video = gui.ImageWidget(
337 o3d.geometry.Image(np.zeros(self.video_size, dtype=np.uint8)))
338 self.show_depth.add_child(self.depth_video)
339
340 self.status_message = gui.Label("")
341 self.panel.add_child(self.status_message)
342
343 self.flag_exit = False
344 self.flag_gui_init = False
345
346 def update(self, frame_elements):
347 """Update visualization with point cloud and images. Must run in main
348 thread since this makes GUI calls.
349
350 Args:
351 frame_elements: dict {element_type: geometry element}.
352 Dictionary of element types to geometry elements to be updated
353 in the GUI:
354 'pcd': point cloud,
355 'color': rgb image (3 channel, uint8),
356 'depth': depth image (uint8),
357 'status_message': message
358 """
359 if not self.flag_gui_init:
360 # Set dummy point cloud to allocate graphics memory
361 dummy_pcd = o3d.t.geometry.PointCloud({
362 'positions':
363 o3d.core.Tensor.zeros((self.max_pcd_vertices, 3),
364 o3d.core.Dtype.Float32),
365 'colors':
366 o3d.core.Tensor.zeros((self.max_pcd_vertices, 3),
367 o3d.core.Dtype.Float32),
368 'normals':
369 o3d.core.Tensor.zeros((self.max_pcd_vertices, 3),
370 o3d.core.Dtype.Float32)
371 })
372 if self.pcdview.scene.has_geometry('pcd'):
373 self.pcdview.scene.remove_geometry('pcd')
374
375 self.pcd_material.shader = "normals" if self.flag_normals else "defaultLit"
376 self.pcdview.scene.add_geometry('pcd', dummy_pcd, self.pcd_material)
377 self.flag_gui_init = True
378
379 # TODO(ssheorey) Switch to update_geometry() after #3452 is fixed
380 if os.name == 'nt':
381 self.pcdview.scene.remove_geometry('pcd')
382 self.pcdview.scene.add_geometry('pcd', frame_elements['pcd'],
383 self.pcd_material)
384 else:
385 update_flags = (rendering.Scene.UPDATE_POINTS_FLAG |
386 rendering.Scene.UPDATE_COLORS_FLAG |
387 (rendering.Scene.UPDATE_NORMALS_FLAG
388 if self.flag_normals else 0))
389 self.pcdview.scene.scene.update_geometry('pcd',
390 frame_elements['pcd'],
391 update_flags)
392
393 # Update color and depth images
394 # TODO(ssheorey) Remove CPU transfer after we have CUDA -> OpenGL bridge
395 if self.show_color.get_is_open() and 'color' in frame_elements:
396 sampling_ratio = self.video_size[1] / frame_elements['color'].columns
397 self.color_video.update_image(
398 frame_elements['color'].resize(sampling_ratio).cpu())
399 if self.show_depth.get_is_open() and 'depth' in frame_elements:
400 sampling_ratio = self.video_size[1] / frame_elements['depth'].columns
401 self.depth_video.update_image(
402 frame_elements['depth'].resize(sampling_ratio).cpu())
403
404 if 'status_message' in frame_elements:
405 self.status_message.text = frame_elements["status_message"]
406
407 self.pcdview.force_redraw()
408
409 def camera_view(self):
410 """Callback to reset point cloud view to the camera"""
411 self.pcdview.setup_camera(self.vfov, self.pcd_bounds, [0, 0, 0])
412 # Look at [0, 0, 1] from camera placed at [0, 0, 0] with Y axis
413 # pointing at [0, -1, 0]
414 self.pcdview.scene.camera.look_at([0, 0, 1], [0, 0, 0], [0, -1, 0])
415
416 def birds_eye_view(self):
417 """Callback to reset point cloud view to birds eye (overhead) view"""
418 self.pcdview.setup_camera(self.vfov, self.pcd_bounds, [0, 0, 0])
419 self.pcdview.scene.camera.look_at([0, 0, 1.5], [0, 3, 1.5], [0, -1, 0])
420
421 def on_layout(self, layout_context):
422 # The on_layout callback should set the frame (position + size) of every
423 # child correctly. After the callback is done the window will layout
424 # the grandchildren.
425 """Callback on window initialize / resize"""
426 frame = self.window.content_rect
427 self.pcdview.frame = frame
428 panel_size = self.panel.calc_preferred_size(layout_context,
429 self.panel.Constraints())
430 self.panel.frame = gui.Rect(frame.get_right() - panel_size.width,
431 frame.y, panel_size.width,
432 panel_size.height)
433
434
435class PipelineController:
436 """Entry point for the app. Controls the PipelineModel object for IO and
437 processing and the PipelineView object for display and UI. All methods
438 operate on the main thread.
439 """
440
441 def __init__(self, camera_config_file=None, rgbd_video=None, device=None):
442 """Initialize.
443
444 Args:
445 camera_config_file (str): Camera configuration json file.
446 rgbd_video (str): RS bag file containing the RGBD video. If this is
447 provided, connected cameras are ignored.
448 device (str): Compute device (e.g.: 'cpu:0' or 'cuda:0').
449 """
450 self.pipeline_model = PipelineModel(self.update_view,
451 camera_config_file, rgbd_video,
452 device)
453
454 self.pipeline_view = PipelineView(
455 1.25 * self.pipeline_model.vfov,
456 self.pipeline_model.max_points,
457 on_window_close=self.on_window_close,
458 on_toggle_capture=self.on_toggle_capture,
459 on_save_pcd=self.on_save_pcd,
460 on_save_rgbd=self.on_save_rgbd,
461 on_toggle_record=self.on_toggle_record
462 if rgbd_video is None else None,
463 on_toggle_normals=self.on_toggle_normals)
464
465 threading.Thread(name='PipelineModel',
466 target=self.pipeline_model.run).start()
467 gui.Application.instance.run()
468
469 def update_view(self, frame_elements):
470 """Updates view with new data. May be called from any thread.
471
472 Args:
473 frame_elements (dict): Display elements (point cloud and images)
474 from the new frame to be shown.
475 """
476 gui.Application.instance.post_to_main_thread(
477 self.pipeline_view.window,
478 lambda: self.pipeline_view.update(frame_elements))
479
480 def on_toggle_capture(self, is_enabled):
481 """Callback to toggle capture."""
482 self.pipeline_model.flag_capture = is_enabled
483 if not is_enabled:
484 self.on_toggle_record(False)
485 if self.pipeline_view.toggle_record is not None:
486 self.pipeline_view.toggle_record.is_on = False
487 else:
488 with self.pipeline_model.cv_capture:
489 self.pipeline_model.cv_capture.notify()
490
491 def on_toggle_record(self, is_enabled):
492 """Callback to toggle recording RGBD video."""
493 self.pipeline_model.flag_record = is_enabled
494
495 def on_toggle_normals(self, is_enabled):
496 """Callback to toggle display of normals"""
497 self.pipeline_model.flag_normals = is_enabled
498 self.pipeline_view.flag_normals = is_enabled
499 self.pipeline_view.flag_gui_init = False
500
501 def on_window_close(self):
502 """Callback when the user closes the application window."""
503 self.pipeline_model.flag_exit = True
504 with self.pipeline_model.cv_capture:
505 self.pipeline_model.cv_capture.notify_all()
506 return True # OK to close window
507
508 def on_save_pcd(self):
509 """Callback to save current point cloud."""
510 self.pipeline_model.flag_save_pcd = True
511
512 def on_save_rgbd(self):
513 """Callback to save current RGBD image pair."""
514 self.pipeline_model.flag_save_rgbd = True
515
516
517if __name__ == "__main__":
518
519 log.basicConfig(level=log.INFO)
520 parser = argparse.ArgumentParser(
521 description=__doc__,
522 formatter_class=argparse.RawDescriptionHelpFormatter)
523 parser.add_argument('--camera-config',
524 help='RGBD camera configuration JSON file')
525 parser.add_argument('--rgbd-video', help='RGBD video file (RealSense bag)')
526 parser.add_argument('--device',
527 help='Device to run computations. e.g. cpu:0 or cuda:0 '
528 'Default is CUDA GPU if available, else CPU.')
529
530 args = parser.parse_args()
531 if args.camera_config and args.rgbd_video:
532 log.critical(
533 "Please provide only one of --camera-config and --rgbd-video arguments"
534 )
535 else:
536 PipelineController(args.camera_config, args.rgbd_video, args.device)
remove_geometry.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d as o3d
9import numpy as np
10import time
11import copy
12
13
14def visualize_non_blocking(vis, pcds):
15 for pcd in pcds:
16 vis.update_geometry(pcd)
17 vis.poll_events()
18 vis.update_renderer()
19
20
21pcd_data = o3d.data.PCDPointCloud()
22pcd_orig = o3d.io.read_point_cloud(pcd_data.path)
23flip_transform = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
24pcd_orig.transform(flip_transform)
25n_pcd = 5
26pcds = []
27for i in range(n_pcd):
28 pcds.append(copy.deepcopy(pcd_orig))
29 trans = np.identity(4)
30 trans[:3, 3] = [3 * i, 0, 0]
31 pcds[i].transform(trans)
32
33vis = o3d.visualization.Visualizer()
34vis.create_window()
35start_time = time.time()
36added = [False] * n_pcd
37
38curr_sec = int(time.time() - start_time)
39prev_sec = curr_sec - 1
40
41while True:
42 curr_sec = int(time.time() - start_time)
43 if curr_sec - prev_sec == 1:
44 prev_sec = curr_sec
45
46 for i in range(n_pcd):
47 if curr_sec % (n_pcd * 2) == i and not added[i]:
48 vis.add_geometry(pcds[i])
49 added[i] = True
50 print("Adding %d" % i)
51 if curr_sec % (n_pcd * 2) == (i + n_pcd) and added[i]:
52 vis.remove_geometry(pcds[i])
53 added[i] = False
54 print("Removing %d" % i)
55
56 visualize_non_blocking(vis, pcds)
render_to_image.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d as o3d
9import open3d.visualization.rendering as rendering
10
11
12def main():
13 render = rendering.OffscreenRenderer(640, 480)
14
15 yellow = rendering.MaterialRecord()
16 yellow.base_color = [1.0, 0.75, 0.0, 1.0]
17 yellow.shader = "defaultLit"
18
19 green = rendering.MaterialRecord()
20 green.base_color = [0.0, 0.5, 0.0, 1.0]
21 green.shader = "defaultLit"
22
23 grey = rendering.MaterialRecord()
24 grey.base_color = [0.7, 0.7, 0.7, 1.0]
25 grey.shader = "defaultLit"
26
27 white = rendering.MaterialRecord()
28 white.base_color = [1.0, 1.0, 1.0, 1.0]
29 white.shader = "defaultLit"
30
31 cyl = o3d.geometry.TriangleMesh.create_cylinder(.05, 3)
32 cyl.compute_vertex_normals()
33 cyl.translate([-2, 0, 1.5])
34 sphere = o3d.geometry.TriangleMesh.create_sphere(.2)
35 sphere.compute_vertex_normals()
36 sphere.translate([-2, 0, 3])
37
38 box = o3d.geometry.TriangleMesh.create_box(2, 2, 1)
39 box.compute_vertex_normals()
40 box.translate([-1, -1, 0])
41 solid = o3d.geometry.TriangleMesh.create_icosahedron(0.5)
42 solid.compute_triangle_normals()
43 solid.compute_vertex_normals()
44 solid.translate([0, 0, 1.75])
45
46 render.scene.add_geometry("cyl", cyl, green)
47 render.scene.add_geometry("sphere", sphere, yellow)
48 render.scene.add_geometry("box", box, grey)
49 render.scene.add_geometry("solid", solid, white)
50 render.setup_camera(60.0, [0, 0, 0], [0, 10, 0], [0, 0, 1])
51 render.scene.scene.set_sun_light([0.707, 0.0, -.707], [1.0, 1.0, 1.0],
52 75000)
53 render.scene.scene.enable_sun_light(True)
54 render.scene.show_axes(True)
55
56 img = render.render_to_image()
57 print("Saving image at test.png")
58 o3d.io.write_image("test.png", img, 9)
59
60 render.setup_camera(60.0, [0, 0, 0], [-10, 0, 0], [0, 0, 1])
61 img = render.render_to_image()
62 print("Saving image at test2.png")
63 o3d.io.write_image("test2.png", img, 9)
64
65
66if __name__ == "__main__":
67 main()
tensorboard_pytorch.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7import copy
8import os
9import sys
10import numpy as np
11import open3d as o3d
12# pylint: disable-next=unused-import
13from open3d.visualization.tensorboard_plugin.util import to_dict_batch
14from torch.utils.tensorboard import SummaryWriter
15
16BASE_LOGDIR = "demo_logs/pytorch/"
17MODEL_DIR = os.path.join(
18 os.path.dirname(os.path.dirname(os.path.dirname(
19 os.path.realpath(__file__)))), "test_data", "monkey")
20
21
22def small_scale(run_name="small_scale"):
23 """Basic demo with cube and cylinder with normals and colors.
24 """
25 logdir = os.path.join(BASE_LOGDIR, run_name)
26 writer = SummaryWriter(logdir)
27
28 cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4, create_uv_map=True)
29 cube.compute_vertex_normals()
30 cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=1.0,
31 height=2.0,
32 resolution=20,
33 split=4,
34 create_uv_map=True)
35 cylinder.compute_vertex_normals()
36 colors = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
37 for step in range(3):
38 cube.paint_uniform_color(colors[step])
39 writer.add_3d('cube', to_dict_batch([cube]), step=step)
40 cylinder.paint_uniform_color(colors[step])
41 writer.add_3d('cylinder', to_dict_batch([cylinder]), step=step)
42
43
44def property_reference(run_name="property_reference"):
45 """Produces identical visualization to small_scale, but does not store
46 repeated properties of ``vertex_positions`` and ``vertex_normals``.
47 """
48 logdir = os.path.join(BASE_LOGDIR, run_name)
49 writer = SummaryWriter(logdir)
50
51 cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4, create_uv_map=True)
52 cube.compute_vertex_normals()
53 cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=1.0,
54 height=2.0,
55 resolution=20,
56 split=4,
57 create_uv_map=True)
58 cylinder.compute_vertex_normals()
59 colors = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
60 for step in range(3):
61 cube.paint_uniform_color(colors[step])
62 cube_summary = to_dict_batch([cube])
63 if step > 0:
64 cube_summary['vertex_positions'] = 0
65 cube_summary['vertex_normals'] = 0
66 writer.add_3d('cube', cube_summary, step=step)
67 cylinder.paint_uniform_color(colors[step])
68 cylinder_summary = to_dict_batch([cylinder])
69 if step > 0:
70 cylinder_summary['vertex_positions'] = 0
71 cylinder_summary['vertex_normals'] = 0
72 writer.add_3d('cylinder', cylinder_summary, step=step)
73
74
75def large_scale(n_steps=16,
76 batch_size=1,
77 base_resolution=200,
78 run_name="large_scale"):
79 """Generate a large scale summary. Geometry resolution increases linearly
80 with step. Each element in a batch is painted a different color.
81 """
82 logdir = os.path.join(BASE_LOGDIR, run_name)
83 writer = SummaryWriter(logdir)
84 colors = []
85 for k in range(batch_size):
86 t = k * np.pi / batch_size
87 colors.append(((1 + np.sin(t)) / 2, (1 + np.cos(t)) / 2, t / np.pi))
88 for step in range(n_steps):
89 resolution = base_resolution * (step + 1)
90 cylinder_list = []
91 mobius_list = []
92 cylinder = o3d.geometry.TriangleMesh.create_cylinder(
93 radius=1.0, height=2.0, resolution=resolution, split=4)
94 cylinder.compute_vertex_normals()
95 mobius = o3d.geometry.TriangleMesh.create_mobius(
96 length_split=int(3.5 * resolution),
97 width_split=int(0.75 * resolution),
98 twists=1,
99 raidus=1,
100 flatness=1,
101 width=1,
102 scale=1)
103 mobius.compute_vertex_normals()
104 for b in range(batch_size):
105 cylinder_list.append(copy.deepcopy(cylinder))
106 cylinder_list[b].paint_uniform_color(colors[b])
107 mobius_list.append(copy.deepcopy(mobius))
108 mobius_list[b].paint_uniform_color(colors[b])
109 writer.add_3d('cylinder',
110 to_dict_batch(cylinder_list),
111 step=step,
112 max_outputs=batch_size)
113 writer.add_3d('mobius',
114 to_dict_batch(mobius_list),
115 step=step,
116 max_outputs=batch_size)
117
118
119def with_material(model_dir=MODEL_DIR):
120 """Read an obj model from a directory and write as a TensorBoard summary.
121 """
122 model_name = os.path.basename(model_dir)
123 logdir = os.path.join(BASE_LOGDIR, model_name)
124 model_path = os.path.join(model_dir, model_name + ".obj")
125 model = o3d.t.geometry.TriangleMesh.from_legacy(
126 o3d.io.read_triangle_mesh(model_path))
127 summary_3d = {
128 "vertex_positions": model.vertex.positions,
129 "vertex_normals": model.vertex.normals,
130 "triangle_texture_uvs": model.triangle["texture_uvs"],
131 "triangle_indices": model.triangle.indices,
132 "material_name": "defaultLit"
133 }
134 names_to_o3dprop = {"ao": "ambient_occlusion"}
135
136 for texture in ("albedo", "normal", "ao", "metallic", "roughness"):
137 texture_file = os.path.join(model_dir, texture + ".png")
138 if os.path.exists(texture_file):
139 texture = names_to_o3dprop.get(texture, texture)
140 summary_3d.update({
141 ("material_texture_map_" + texture):
142 o3d.t.io.read_image(texture_file)
143 })
144 if texture == "metallic":
145 summary_3d.update(material_scalar_metallic=1.0)
146
147 writer = SummaryWriter(logdir)
148 writer.add_3d(model_name, summary_3d, step=0)
149
150
151def demo_scene():
152 """Write the demo_scene.py example showing rich PBR materials as a summary
153 """
154 import demo_scene
155 geoms = demo_scene.create_scene()
156 writer = SummaryWriter(os.path.join(BASE_LOGDIR, 'demo_scene'))
157 for geom_data in geoms:
158 geom = geom_data["geometry"]
159 summary_3d = {}
160 for key, tensor in geom.vertex.items():
161 summary_3d["vertex_" + key] = tensor
162 for key, tensor in geom.triangle.items():
163 summary_3d["triangle_" + key] = tensor
164 if geom.has_valid_material():
165 summary_3d["material_name"] = geom.material.material_name
166 for key, value in geom.material.scalar_properties.items():
167 summary_3d["material_scalar_" + key] = value
168 for key, value in geom.material.vector_properties.items():
169 summary_3d["material_vector_" + key] = value
170 for key, value in geom.material.texture_maps.items():
171 summary_3d["material_texture_map_" + key] = value
172 writer.add_3d(geom_data["name"], summary_3d, step=0)
173
174
175if __name__ == "__main__":
176
177 examples = ('small_scale', 'large_scale', 'property_reference',
178 'with_material', 'demo_scene')
179 selected = tuple(eg for eg in sys.argv[1:] if eg in examples)
180 if len(selected) == 0:
181 print(f'Usage: python {__file__} EXAMPLE...')
182 print(f' where EXAMPLE are from {examples}')
183 selected = ('property_reference', 'with_material')
184
185 for eg in selected:
186 locals()[eg]()
187
188 print(f"Run 'tensorboard --logdir {BASE_LOGDIR}' to visualize the 3D "
189 "summary.")
tensorboard_tensorflow.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7import copy
8import os
9import sys
10import numpy as np
11import open3d as o3d
12from open3d.visualization.tensorboard_plugin import summary
13from open3d.visualization.tensorboard_plugin.util import to_dict_batch
14import tensorflow as tf
15
16BASE_LOGDIR = "demo_logs/tf/"
17MODEL_DIR = os.path.join(
18 os.path.dirname(os.path.dirname(os.path.dirname(
19 os.path.realpath(__file__)))), "test_data", "monkey")
20
21
22def small_scale(run_name="small_scale"):
23 """Basic demo with cube and cylinder with normals and colors.
24 """
25 logdir = os.path.join(BASE_LOGDIR, run_name)
26 writer = tf.summary.create_file_writer(logdir)
27
28 cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4, create_uv_map=True)
29 cube.compute_vertex_normals()
30 cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=1.0,
31 height=2.0,
32 resolution=20,
33 split=4,
34 create_uv_map=True)
35 cylinder.compute_vertex_normals()
36 colors = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
37 with writer.as_default():
38 for step in range(3):
39 cube.paint_uniform_color(colors[step])
40 summary.add_3d('cube',
41 to_dict_batch([cube]),
42 step=step,
43 logdir=logdir)
44 cylinder.paint_uniform_color(colors[step])
45 summary.add_3d('cylinder',
46 to_dict_batch([cylinder]),
47 step=step,
48 logdir=logdir)
49
50
51def property_reference(run_name="property_reference"):
52 """Produces identical visualization to small_scale, but does not store
53 repeated properties of ``vertex_positions`` and ``vertex_normals``.
54 """
55 logdir = os.path.join(BASE_LOGDIR, run_name)
56 writer = tf.summary.create_file_writer(logdir)
57
58 cube = o3d.geometry.TriangleMesh.create_box(1, 2, 4, create_uv_map=True)
59 cube.compute_vertex_normals()
60 cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=1.0,
61 height=2.0,
62 resolution=20,
63 split=4,
64 create_uv_map=True)
65 cylinder.compute_vertex_normals()
66 colors = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
67 with writer.as_default():
68 for step in range(3):
69 cube.paint_uniform_color(colors[step])
70 cube_summary = to_dict_batch([cube])
71 if step > 0:
72 cube_summary['vertex_positions'] = 0
73 cube_summary['vertex_normals'] = 0
74 summary.add_3d('cube', cube_summary, step=step, logdir=logdir)
75 cylinder.paint_uniform_color(colors[step])
76 cylinder_summary = to_dict_batch([cylinder])
77 if step > 0:
78 cylinder_summary['vertex_positions'] = 0
79 cylinder_summary['vertex_normals'] = 0
80 summary.add_3d('cylinder',
81 cylinder_summary,
82 step=step,
83 logdir=logdir)
84
85
86def large_scale(n_steps=16,
87 batch_size=1,
88 base_resolution=200,
89 run_name="large_scale"):
90 """Generate a large scale summary. Geometry resolution increases linearly
91 with step. Each element in a batch is painted a different color.
92 """
93 logdir = os.path.join(BASE_LOGDIR, run_name)
94 writer = tf.summary.create_file_writer(logdir)
95 colors = []
96 for k in range(batch_size):
97 t = k * np.pi / batch_size
98 colors.append(((1 + np.sin(t)) / 2, (1 + np.cos(t)) / 2, t / np.pi))
99 with writer.as_default():
100 for step in range(n_steps):
101 resolution = base_resolution * (step + 1)
102 cylinder_list = []
103 mobius_list = []
104 cylinder = o3d.geometry.TriangleMesh.create_cylinder(
105 radius=1.0, height=2.0, resolution=resolution, split=4)
106 cylinder.compute_vertex_normals()
107 mobius = o3d.geometry.TriangleMesh.create_mobius(
108 length_split=int(3.5 * resolution),
109 width_split=int(0.75 * resolution),
110 twists=1,
111 raidus=1,
112 flatness=1,
113 width=1,
114 scale=1)
115 mobius.compute_vertex_normals()
116 for b in range(batch_size):
117 cylinder_list.append(copy.deepcopy(cylinder))
118 cylinder_list[b].paint_uniform_color(colors[b])
119 mobius_list.append(copy.deepcopy(mobius))
120 mobius_list[b].paint_uniform_color(colors[b])
121 summary.add_3d('cylinder',
122 to_dict_batch(cylinder_list),
123 step=step,
124 logdir=logdir,
125 max_outputs=batch_size)
126 summary.add_3d('mobius',
127 to_dict_batch(mobius_list),
128 step=step,
129 logdir=logdir,
130 max_outputs=batch_size)
131
132
133def with_material(model_dir=MODEL_DIR):
134 """Read an obj model from a directory and write as a TensorBoard summary.
135 """
136 model_name = os.path.basename(model_dir)
137 logdir = os.path.join(BASE_LOGDIR, model_name)
138 model_path = os.path.join(model_dir, model_name + ".obj")
139 model = o3d.t.geometry.TriangleMesh.from_legacy(
140 o3d.io.read_triangle_mesh(model_path))
141 summary_3d = {
142 "vertex_positions": model.vertex.positions,
143 "vertex_normals": model.vertex.normals,
144 "triangle_texture_uvs": model.triangle["texture_uvs"],
145 "triangle_indices": model.triangle.indices,
146 "material_name": "defaultLit"
147 }
148 names_to_o3dprop = {"ao": "ambient_occlusion"}
149
150 for texture in ("albedo", "normal", "ao", "metallic", "roughness"):
151 texture_file = os.path.join(model_dir, texture + ".png")
152 if os.path.exists(texture_file):
153 texture = names_to_o3dprop.get(texture, texture)
154 summary_3d.update({
155 ("material_texture_map_" + texture):
156 o3d.t.io.read_image(texture_file)
157 })
158 if texture == "metallic":
159 summary_3d.update(material_scalar_metallic=1.0)
160
161 writer = tf.summary.create_file_writer(logdir)
162 with writer.as_default():
163 summary.add_3d(model_name, summary_3d, step=0, logdir=logdir)
164
165
166def demo_scene():
167 """Write the demo_scene.py example showing rich PBR materials as a summary.
168 """
169 import demo_scene
170 geoms = demo_scene.create_scene()
171 logdir = os.path.join(BASE_LOGDIR, 'demo_scene')
172 writer = tf.summary.create_file_writer(logdir)
173 for geom_data in geoms:
174 geom = geom_data["geometry"]
175 summary_3d = {}
176 for key, tensor in geom.vertex.items():
177 summary_3d["vertex_" + key] = tensor
178 for key, tensor in geom.triangle.items():
179 summary_3d["triangle_" + key] = tensor
180 if geom.has_valid_material():
181 summary_3d["material_name"] = geom.material.material_name
182 for key, value in geom.material.scalar_properties.items():
183 summary_3d["material_scalar_" + key] = value
184 for key, value in geom.material.vector_properties.items():
185 summary_3d["material_vector_" + key] = value
186 for key, value in geom.material.texture_maps.items():
187 summary_3d["material_texture_map_" + key] = value
188 with writer.as_default():
189 summary.add_3d(geom_data["name"], summary_3d, step=0, logdir=logdir)
190
191
192if __name__ == "__main__":
193
194 examples = ('small_scale', 'large_scale', 'property_reference',
195 'with_material', 'demo_scene')
196 selected = tuple(eg for eg in sys.argv[1:] if eg in examples)
197 if len(selected) == 0:
198 print(f'Usage: python {__file__} EXAMPLE...')
199 print(f' where EXAMPLE are from {examples}')
200 selected = ('property_reference', 'with_material')
201
202 for eg in selected:
203 locals()[eg]()
204
205 print(f"Run 'tensorboard --logdir {BASE_LOGDIR}' to visualize the 3D "
206 "summary.")
text3d.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import numpy as np
9import open3d as o3d
10import open3d.visualization.gui as gui
11import open3d.visualization.rendering as rendering
12
13
14def make_point_cloud(npts, center, radius):
15 pts = np.random.uniform(-radius, radius, size=[npts, 3]) + center
16 cloud = o3d.geometry.PointCloud()
17 cloud.points = o3d.utility.Vector3dVector(pts)
18 colors = np.random.uniform(0.0, 1.0, size=[npts, 3])
19 cloud.colors = o3d.utility.Vector3dVector(colors)
20 return cloud
21
22
23def high_level():
24 app = gui.Application.instance
25 app.initialize()
26
27 points = make_point_cloud(100, (0, 0, 0), 1.0)
28
29 vis = o3d.visualization.O3DVisualizer("Open3D - 3D Text", 1024, 768)
30 vis.show_settings = True
31 vis.add_geometry("Points", points)
32 for idx in range(0, len(points.points)):
33 vis.add_3d_label(points.points[idx], "{}".format(idx))
34 vis.reset_camera_to_default()
35
36 app.add_window(vis)
37 app.run()
38
39
40def low_level():
41 app = gui.Application.instance
42 app.initialize()
43
44 points = make_point_cloud(100, (0, 0, 0), 1.0)
45
46 w = app.create_window("Open3D - 3D Text", 1024, 768)
47 widget3d = gui.SceneWidget()
48 widget3d.scene = rendering.Open3DScene(w.renderer)
49 mat = rendering.MaterialRecord()
50 mat.shader = "defaultUnlit"
51 mat.point_size = 5 * w.scaling
52 widget3d.scene.add_geometry("Points", points, mat)
53 for idx in range(0, len(points.points)):
54 l = widget3d.add_3d_label(points.points[idx], "{}".format(idx))
55 l.color = gui.Color(points.colors[idx][0], points.colors[idx][1],
56 points.colors[idx][2])
57 l.scale = np.random.uniform(0.5, 3.0)
58 bbox = widget3d.scene.bounding_box
59 widget3d.setup_camera(60.0, bbox, bbox.get_center())
60 w.add_child(widget3d)
61
62 app.run()
63
64
65if __name__ == "__main__":
66 high_level()
67 low_level()
textured_mesh.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import sys
9import os
10import open3d as o3d
11
12
13def main():
14 if len(sys.argv) < 2:
15 print("""Usage: textured-mesh.py [model directory]
16 This example will load [model directory].obj plus any of albedo, normal,
17 ao, metallic and roughness textures present. The textures should be named
18 albedo.png, normal.png, ao.png, metallic.png and roughness.png
19 respectively.""")
20 sys.exit()
21
22 model_dir = os.path.normpath(os.path.realpath(sys.argv[1]))
23 model_name = os.path.join(model_dir, os.path.basename(model_dir) + ".obj")
24 mesh = o3d.t.geometry.TriangleMesh.from_legacy(
25 o3d.io.read_triangle_mesh(model_name))
26 material = mesh.material
27 material.material_name = "defaultLit"
28
29 names_to_o3dprop = {"ao": "ambient_occlusion"}
30 for texture in ("albedo", "normal", "ao", "metallic", "roughness"):
31 texture_file = os.path.join(model_dir, texture + ".png")
32 if os.path.exists(texture_file):
33 texture = names_to_o3dprop.get(texture, texture)
34 material.texture_maps[texture] = o3d.t.io.read_image(texture_file)
35 if "metallic" in material.texture_maps:
36 material.scalar_properties["metallic"] = 1.0
37
38 o3d.visualization.draw(mesh, title=model_name)
39
40
41if __name__ == "__main__":
42 main()
textured_model.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import sys
9import os
10import open3d as o3d
11
12
13def main():
14 if len(sys.argv) < 2:
15 print("""Usage: texture-model.py [model directory]
16 This example will load [model directory].obj plus any of albedo, normal,
17 ao, metallic and roughness textures present.""")
18 sys.exit()
19
20 model_dir = sys.argv[1]
21 model_name = os.path.join(model_dir, os.path.basename(model_dir) + ".obj")
22 model = o3d.io.read_triangle_mesh(model_name)
23 material = o3d.visualization.rendering.MaterialRecord()
24 material.shader = "defaultLit"
25
26 albedo_name = os.path.join(model_dir, "albedo.png")
27 normal_name = os.path.join(model_dir, "normal.png")
28 ao_name = os.path.join(model_dir, "ao.png")
29 metallic_name = os.path.join(model_dir, "metallic.png")
30 roughness_name = os.path.join(model_dir, "roughness.png")
31 if os.path.exists(albedo_name):
32 material.albedo_img = o3d.io.read_image(albedo_name)
33 if os.path.exists(normal_name):
34 material.normal_img = o3d.io.read_image(normal_name)
35 if os.path.exists(ao_name):
36 material.ao_img = o3d.io.read_image(ao_name)
37 if os.path.exists(metallic_name):
38 material.base_metallic = 1.0
39 material.metallic_img = o3d.io.read_image(metallic_name)
40 if os.path.exists(roughness_name):
41 material.roughness_img = o3d.io.read_image(roughness_name)
42
43 o3d.visualization.draw([{
44 "name": "cube",
45 "geometry": model,
46 "material": material
47 }])
48
49
50if __name__ == "__main__":
51 main()
to_mitsuba.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import open3d as o3d
9import mitsuba as mi
10
11
12def render_mesh(mesh, mesh_center):
13 scene = mi.load_dict({
14 'type': 'scene',
15 'integrator': {
16 'type': 'path'
17 },
18 'light': {
19 'type': 'constant',
20 'radiance': {
21 'type': 'rgb',
22 'value': 1.0
23 }
24 # NOTE: For better results comment out the constant emitter above
25 # and uncomment out the lines below changing the filename to an HDRI
26 # envmap you have.
27 # 'type': 'envmap',
28 # 'filename': '/home/renes/Downloads/solitude_interior_4k.exr'
29 },
30 'sensor': {
31 'type':
32 'perspective',
33 'focal_length':
34 '50mm',
35 'to_world':
36 mi.ScalarTransform4f.look_at(origin=[0, 0, 5],
37 target=mesh_center,
38 up=[0, 1, 0]),
39 'thefilm': {
40 'type': 'hdrfilm',
41 'width': 1024,
42 'height': 768,
43 },
44 'thesampler': {
45 'type': 'multijitter',
46 'sample_count': 64,
47 },
48 },
49 'themesh': mesh,
50 })
51
52 img = mi.render(scene, spp=256)
53 return img
54
55
56# Default to LLVM variant which should be available on all
57# platforms. If you have a system with a CUDA device then comment out LLVM
58# variant and uncomment cuda variant
59mi.set_variant('llvm_ad_rgb')
60# mi.set_variant('cuda_ad_rgb')
61
62# Load mesh and maps using Open3D
63dataset = o3d.data.MonkeyModel()
64mesh = o3d.t.io.read_triangle_mesh(dataset.path)
65mesh_center = mesh.get_axis_aligned_bounding_box().get_center()
66mesh.material.set_default_properties()
67mesh.material.material_name = 'defaultLit'
68mesh.material.scalar_properties['metallic'] = 1.0
69mesh.material.texture_maps['albedo'] = o3d.t.io.read_image(
70 dataset.path_map['albedo'])
71mesh.material.texture_maps['roughness'] = o3d.t.io.read_image(
72 dataset.path_map['roughness'])
73mesh.material.texture_maps['metallic'] = o3d.t.io.read_image(
74 dataset.path_map['metallic'])
75
76print('Render mesh with material converted to Mitsuba principled BSDF')
77mi_mesh = mesh.to_mitsuba('monkey')
78img = render_mesh(mi_mesh, mesh_center.numpy())
79mi.Bitmap(img).write('test.exr')
80
81print('Render mesh with normal-mapped prnincipled BSDF')
82mesh.material.texture_maps['normal'] = o3d.t.io.read_image(
83 dataset.path_map['normal'])
84mi_mesh = mesh.to_mitsuba('monkey')
85img = render_mesh(mi_mesh, mesh_center.numpy())
86mi.Bitmap(img).write('test2.exr')
87
88print('Rendering mesh with Mitsuba smooth plastic BSDF')
89bsdf_smooth_plastic = mi.load_dict({
90 'type': 'plastic',
91 'diffuse_reflectance': {
92 'type': 'rgb',
93 'value': [0.1, 0.27, 0.36]
94 },
95 'int_ior': 1.9
96})
97mi_mesh = mesh.to_mitsuba('monkey', bsdf=bsdf_smooth_plastic)
98img = render_mesh(mi_mesh, mesh_center.numpy())
99mi.Bitmap(img).write('test3.exr')
100
101# Render with Open3D
102o3d.visualization.draw(mesh)
video.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import numpy as np
9import open3d as o3d
10import open3d.visualization.gui as gui
11import open3d.visualization.rendering as rendering
12import time
13import threading
14
15
16def rescale_greyscale(img):
17 data = np.asarray(img)
18 assert (len(data.shape) == 2) # requires 1 channel image
19 dataFloat = data.astype(np.float64)
20 max_val = dataFloat.max()
21 # We don't currently support 16-bit images, so convert to 8-bit
22 dataFloat *= 255.0 / max_val
23 data8 = dataFloat.astype(np.uint8)
24 return o3d.geometry.Image(data8)
25
26
27class VideoWindow:
28
29 def __init__(self):
30 self.rgb_images = []
31 rgbd_data = o3d.data.SampleRedwoodRGBDImages()
32 for path in rgbd_data.color_paths:
33 img = o3d.io.read_image(path)
34 self.rgb_images.append(img)
35 self.depth_images = []
36 for path in rgbd_data.depth_paths:
37 img = o3d.io.read_image(path)
38 # The images are pretty dark, so rescale them so that it is
39 # obvious that this is a depth image, for the sake of the example
40 img = rescale_greyscale(img)
41 self.depth_images.append(img)
42 assert (len(self.rgb_images) == len(self.depth_images))
43
44 self.window = gui.Application.instance.create_window(
45 "Open3D - Video Example", 1000, 500)
46 self.window.set_on_layout(self._on_layout)
47 self.window.set_on_close(self._on_close)
48
49 self.widget3d = gui.SceneWidget()
50 self.widget3d.scene = rendering.Open3DScene(self.window.renderer)
51 self.window.add_child(self.widget3d)
52
53 lit = rendering.MaterialRecord()
54 lit.shader = "defaultLit"
55 tet = o3d.geometry.TriangleMesh.create_tetrahedron()
56 tet.compute_vertex_normals()
57 tet.paint_uniform_color([0.5, 0.75, 1.0])
58 self.widget3d.scene.add_geometry("tetrahedron", tet, lit)
59 bounds = self.widget3d.scene.bounding_box
60 self.widget3d.setup_camera(60.0, bounds, bounds.get_center())
61 self.widget3d.scene.show_axes(True)
62
63 em = self.window.theme.font_size
64 margin = 0.5 * em
65 self.panel = gui.Vert(0.5 * em, gui.Margins(margin))
66 self.panel.add_child(gui.Label("Color image"))
67 self.rgb_widget = gui.ImageWidget(self.rgb_images[0])
68 self.panel.add_child(self.rgb_widget)
69 self.panel.add_child(gui.Label("Depth image (normalized)"))
70 self.depth_widget = gui.ImageWidget(self.depth_images[0])
71 self.panel.add_child(self.depth_widget)
72 self.window.add_child(self.panel)
73
74 self.is_done = False
75 threading.Thread(target=self._update_thread).start()
76
77 def _on_layout(self, layout_context):
78 contentRect = self.window.content_rect
79 panel_width = 15 * layout_context.theme.font_size # 15 ems wide
80 self.widget3d.frame = gui.Rect(contentRect.x, contentRect.y,
81 contentRect.width - panel_width,
82 contentRect.height)
83 self.panel.frame = gui.Rect(self.widget3d.frame.get_right(),
84 contentRect.y, panel_width,
85 contentRect.height)
86
87 def _on_close(self):
88 self.is_done = True
89 return True # False would cancel the close
90
91 def _update_thread(self):
92 # This is NOT the UI thread, need to call post_to_main_thread() to update
93 # the scene or any part of the UI.
94 idx = 0
95 while not self.is_done:
96 time.sleep(0.100)
97
98 # Get the next frame, for instance, reading a frame from the camera.
99 rgb_frame = self.rgb_images[idx]
100 depth_frame = self.depth_images[idx]
101 idx += 1
102 if idx >= len(self.rgb_images):
103 idx = 0
104
105 # Update the images. This must be done on the UI thread.
106 def update():
107 self.rgb_widget.update_image(rgb_frame)
108 self.depth_widget.update_image(depth_frame)
109 self.widget3d.scene.set_background([1, 1, 1, 1], rgb_frame)
110
111 if not self.is_done:
112 gui.Application.instance.post_to_main_thread(
113 self.window, update)
114
115
116def main():
117 app = o3d.visualization.gui.Application.instance
118 app.initialize()
119
120 win = VideoWindow()
121
122 app.run()
123
124
125if __name__ == "__main__":
126 main()
vis_gui.py#
1# ----------------------------------------------------------------------------
2# - Open3D: www.open3d.org -
3# ----------------------------------------------------------------------------
4# Copyright (c) 2018-2023 www.open3d.org
5# SPDX-License-Identifier: MIT
6# ----------------------------------------------------------------------------
7
8import glob
9import numpy as np
10import open3d as o3d
11import open3d.visualization.gui as gui
12import open3d.visualization.rendering as rendering
13import os
14import platform
15import sys
16
17isMacOS = (platform.system() == "Darwin")
18
19
20class Settings:
21 UNLIT = "defaultUnlit"
22 LIT = "defaultLit"
23 NORMALS = "normals"
24 DEPTH = "depth"
25
26 DEFAULT_PROFILE_NAME = "Bright day with sun at +Y [default]"
27 POINT_CLOUD_PROFILE_NAME = "Cloudy day (no direct sun)"
28 CUSTOM_PROFILE_NAME = "Custom"
29 LIGHTING_PROFILES = {
30 DEFAULT_PROFILE_NAME: {
31 "ibl_intensity": 45000,
32 "sun_intensity": 45000,
33 "sun_dir": [0.577, -0.577, -0.577],
34 # "ibl_rotation":
35 "use_ibl": True,
36 "use_sun": True,
37 },
38 "Bright day with sun at -Y": {
39 "ibl_intensity": 45000,
40 "sun_intensity": 45000,
41 "sun_dir": [0.577, 0.577, 0.577],
42 # "ibl_rotation":
43 "use_ibl": True,
44 "use_sun": True,
45 },
46 "Bright day with sun at +Z": {
47 "ibl_intensity": 45000,
48 "sun_intensity": 45000,
49 "sun_dir": [0.577, 0.577, -0.577],
50 # "ibl_rotation":
51 "use_ibl": True,
52 "use_sun": True,
53 },
54 "Less Bright day with sun at +Y": {
55 "ibl_intensity": 35000,
56 "sun_intensity": 50000,
57 "sun_dir": [0.577, -0.577, -0.577],
58 # "ibl_rotation":
59 "use_ibl": True,
60 "use_sun": True,
61 },
62 "Less Bright day with sun at -Y": {
63 "ibl_intensity": 35000,
64 "sun_intensity": 50000,
65 "sun_dir": [0.577, 0.577, 0.577],
66 # "ibl_rotation":
67 "use_ibl": True,
68 "use_sun": True,
69 },
70 "Less Bright day with sun at +Z": {
71 "ibl_intensity": 35000,
72 "sun_intensity": 50000,
73 "sun_dir": [0.577, 0.577, -0.577],
74 # "ibl_rotation":
75 "use_ibl": True,
76 "use_sun": True,
77 },
78 POINT_CLOUD_PROFILE_NAME: {
79 "ibl_intensity": 60000,
80 "sun_intensity": 50000,
81 "use_ibl": True,
82 "use_sun": False,
83 # "ibl_rotation":
84 },
85 }
86
87 DEFAULT_MATERIAL_NAME = "Polished ceramic [default]"
88 PREFAB = {
89 DEFAULT_MATERIAL_NAME: {
90 "metallic": 0.0,
91 "roughness": 0.7,
92 "reflectance": 0.5,
93 "clearcoat": 0.2,
94 "clearcoat_roughness": 0.2,
95 "anisotropy": 0.0
96 },
97 "Metal (rougher)": {
98 "metallic": 1.0,
99 "roughness": 0.5,
100 "reflectance": 0.9,
101 "clearcoat": 0.0,
102 "clearcoat_roughness": 0.0,
103 "anisotropy": 0.0
104 },
105 "Metal (smoother)": {
106 "metallic": 1.0,
107 "roughness": 0.3,
108 "reflectance": 0.9,
109 "clearcoat": 0.0,
110 "clearcoat_roughness": 0.0,
111 "anisotropy": 0.0
112 },
113 "Plastic": {
114 "metallic": 0.0,
115 "roughness": 0.5,
116 "reflectance": 0.5,
117 "clearcoat": 0.5,
118 "clearcoat_roughness": 0.2,
119 "anisotropy": 0.0
120 },
121 "Glazed ceramic": {
122 "metallic": 0.0,
123 "roughness": 0.5,
124 "reflectance": 0.9,
125 "clearcoat": 1.0,
126 "clearcoat_roughness": 0.1,
127 "anisotropy": 0.0
128 },
129 "Clay": {
130 "metallic": 0.0,
131 "roughness": 1.0,
132 "reflectance": 0.5,
133 "clearcoat": 0.1,
134 "clearcoat_roughness": 0.287,
135 "anisotropy": 0.0
136 },
137 }
138
139 def __init__(self):
140 self.mouse_model = gui.SceneWidget.Controls.ROTATE_CAMERA
141 self.bg_color = gui.Color(1, 1, 1)
142 self.show_skybox = False
143 self.show_axes = False
144 self.use_ibl = True
145 self.use_sun = True
146 self.new_ibl_name = None # clear to None after loading
147 self.ibl_intensity = 45000
148 self.sun_intensity = 45000
149 self.sun_dir = [0.577, -0.577, -0.577]
150 self.sun_color = gui.Color(1, 1, 1)
151
152 self.apply_material = True # clear to False after processing
153 self._materials = {
154 Settings.LIT: rendering.MaterialRecord(),
155 Settings.UNLIT: rendering.MaterialRecord(),
156 Settings.NORMALS: rendering.MaterialRecord(),
157 Settings.DEPTH: rendering.MaterialRecord()
158 }
159 self._materials[Settings.LIT].base_color = [0.9, 0.9, 0.9, 1.0]
160 self._materials[Settings.LIT].shader = Settings.LIT
161 self._materials[Settings.UNLIT].base_color = [0.9, 0.9, 0.9, 1.0]
162 self._materials[Settings.UNLIT].shader = Settings.UNLIT
163 self._materials[Settings.NORMALS].shader = Settings.NORMALS
164 self._materials[Settings.DEPTH].shader = Settings.DEPTH
165
166 # Conveniently, assigning from self._materials[...] assigns a reference,
167 # not a copy, so if we change the property of a material, then switch
168 # to another one, then come back, the old setting will still be there.
169 self.material = self._materials[Settings.LIT]
170
171 def set_material(self, name):
172 self.material = self._materials[name]
173 self.apply_material = True
174
175 def apply_material_prefab(self, name):
176 assert (self.material.shader == Settings.LIT)
177 prefab = Settings.PREFAB[name]
178 for key, val in prefab.items():
179 setattr(self.material, "base_" + key, val)
180
181 def apply_lighting_profile(self, name):
182 profile = Settings.LIGHTING_PROFILES[name]
183 for key, val in profile.items():
184 setattr(self, key, val)
185
186
187class AppWindow:
188 MENU_OPEN = 1
189 MENU_EXPORT = 2
190 MENU_QUIT = 3
191 MENU_SHOW_SETTINGS = 11
192 MENU_ABOUT = 21
193
194 DEFAULT_IBL = "default"
195
196 MATERIAL_NAMES = ["Lit", "Unlit", "Normals", "Depth"]
197 MATERIAL_SHADERS = [
198 Settings.LIT, Settings.UNLIT, Settings.NORMALS, Settings.DEPTH
199 ]
200
201 def __init__(self, width, height):
202 self.settings = Settings()
203 resource_path = gui.Application.instance.resource_path
204 self.settings.new_ibl_name = resource_path + "/" + AppWindow.DEFAULT_IBL
205
206 self.window = gui.Application.instance.create_window(
207 "Open3D", width, height)
208 w = self.window # to make the code more concise
209
210 # 3D widget
211 self._scene = gui.SceneWidget()
212 self._scene.scene = rendering.Open3DScene(w.renderer)
213 self._scene.set_on_sun_direction_changed(self._on_sun_dir)
214
215 # ---- Settings panel ----
216 # Rather than specifying sizes in pixels, which may vary in size based
217 # on the monitor, especially on macOS which has 220 dpi monitors, use
218 # the em-size. This way sizings will be proportional to the font size,
219 # which will create a more visually consistent size across platforms.
220 em = w.theme.font_size
221 separation_height = int(round(0.5 * em))
222
223 # Widgets are laid out in layouts: gui.Horiz, gui.Vert,
224 # gui.CollapsableVert, and gui.VGrid. By nesting the layouts we can
225 # achieve complex designs. Usually we use a vertical layout as the
226 # topmost widget, since widgets tend to be organized from top to bottom.
227 # Within that, we usually have a series of horizontal layouts for each
228 # row. All layouts take a spacing parameter, which is the spacing
229 # between items in the widget, and a margins parameter, which specifies
230 # the spacing of the left, top, right, bottom margins. (This acts like
231 # the 'padding' property in CSS.)
232 self._settings_panel = gui.Vert(
233 0, gui.Margins(0.25 * em, 0.25 * em, 0.25 * em, 0.25 * em))
234
235 # Create a collapsible vertical widget, which takes up enough vertical
236 # space for all its children when open, but only enough for text when
237 # closed. This is useful for property pages, so the user can hide sets
238 # of properties they rarely use.
239 view_ctrls = gui.CollapsableVert("View controls", 0.25 * em,
240 gui.Margins(em, 0, 0, 0))
241
242 self._arcball_button = gui.Button("Arcball")
243 self._arcball_button.horizontal_padding_em = 0.5
244 self._arcball_button.vertical_padding_em = 0
245 self._arcball_button.set_on_clicked(self._set_mouse_mode_rotate)
246 self._fly_button = gui.Button("Fly")
247 self._fly_button.horizontal_padding_em = 0.5
248 self._fly_button.vertical_padding_em = 0
249 self._fly_button.set_on_clicked(self._set_mouse_mode_fly)
250 self._model_button = gui.Button("Model")
251 self._model_button.horizontal_padding_em = 0.5
252 self._model_button.vertical_padding_em = 0
253 self._model_button.set_on_clicked(self._set_mouse_mode_model)
254 self._sun_button = gui.Button("Sun")
255 self._sun_button.horizontal_padding_em = 0.5
256 self._sun_button.vertical_padding_em = 0
257 self._sun_button.set_on_clicked(self._set_mouse_mode_sun)
258 self._ibl_button = gui.Button("Environment")
259 self._ibl_button.horizontal_padding_em = 0.5
260 self._ibl_button.vertical_padding_em = 0
261 self._ibl_button.set_on_clicked(self._set_mouse_mode_ibl)
262 view_ctrls.add_child(gui.Label("Mouse controls"))
263 # We want two rows of buttons, so make two horizontal layouts. We also
264 # want the buttons centered, which we can do be putting a stretch item
265 # as the first and last item. Stretch items take up as much space as
266 # possible, and since there are two, they will each take half the extra
267 # space, thus centering the buttons.
268 h = gui.Horiz(0.25 * em) # row 1
269 h.add_stretch()
270 h.add_child(self._arcball_button)
271 h.add_child(self._fly_button)
272 h.add_child(self._model_button)
273 h.add_stretch()
274 view_ctrls.add_child(h)
275 h = gui.Horiz(0.25 * em) # row 2
276 h.add_stretch()
277 h.add_child(self._sun_button)
278 h.add_child(self._ibl_button)
279 h.add_stretch()
280 view_ctrls.add_child(h)
281
282 self._show_skybox = gui.Checkbox("Show skymap")
283 self._show_skybox.set_on_checked(self._on_show_skybox)
284 view_ctrls.add_fixed(separation_height)
285 view_ctrls.add_child(self._show_skybox)
286
287 self._bg_color = gui.ColorEdit()
288 self._bg_color.set_on_value_changed(self._on_bg_color)
289
290 grid = gui.VGrid(2, 0.25 * em)
291 grid.add_child(gui.Label("BG Color"))
292 grid.add_child(self._bg_color)
293 view_ctrls.add_child(grid)
294
295 self._show_axes = gui.Checkbox("Show axes")
296 self._show_axes.set_on_checked(self._on_show_axes)
297 view_ctrls.add_fixed(separation_height)
298 view_ctrls.add_child(self._show_axes)
299
300 self._profiles = gui.Combobox()
301 for name in sorted(Settings.LIGHTING_PROFILES.keys()):
302 self._profiles.add_item(name)
303 self._profiles.add_item(Settings.CUSTOM_PROFILE_NAME)
304 self._profiles.set_on_selection_changed(self._on_lighting_profile)
305 view_ctrls.add_fixed(separation_height)
306 view_ctrls.add_child(gui.Label("Lighting profiles"))
307 view_ctrls.add_child(self._profiles)
308 self._settings_panel.add_fixed(separation_height)
309 self._settings_panel.add_child(view_ctrls)
310
311 advanced = gui.CollapsableVert("Advanced lighting", 0,
312 gui.Margins(em, 0, 0, 0))
313 advanced.set_is_open(False)
314
315 self._use_ibl = gui.Checkbox("HDR map")
316 self._use_ibl.set_on_checked(self._on_use_ibl)
317 self._use_sun = gui.Checkbox("Sun")
318 self._use_sun.set_on_checked(self._on_use_sun)
319 advanced.add_child(gui.Label("Light sources"))
320 h = gui.Horiz(em)
321 h.add_child(self._use_ibl)
322 h.add_child(self._use_sun)
323 advanced.add_child(h)
324
325 self._ibl_map = gui.Combobox()
326 for ibl in glob.glob(gui.Application.instance.resource_path +
327 "/*_ibl.ktx"):
328
329 self._ibl_map.add_item(os.path.basename(ibl[:-8]))
330 self._ibl_map.selected_text = AppWindow.DEFAULT_IBL
331 self._ibl_map.set_on_selection_changed(self._on_new_ibl)
332 self._ibl_intensity = gui.Slider(gui.Slider.INT)
333 self._ibl_intensity.set_limits(0, 200000)
334 self._ibl_intensity.set_on_value_changed(self._on_ibl_intensity)
335 grid = gui.VGrid(2, 0.25 * em)
336 grid.add_child(gui.Label("HDR map"))
337 grid.add_child(self._ibl_map)
338 grid.add_child(gui.Label("Intensity"))
339 grid.add_child(self._ibl_intensity)
340 advanced.add_fixed(separation_height)
341 advanced.add_child(gui.Label("Environment"))
342 advanced.add_child(grid)
343
344 self._sun_intensity = gui.Slider(gui.Slider.INT)
345 self._sun_intensity.set_limits(0, 200000)
346 self._sun_intensity.set_on_value_changed(self._on_sun_intensity)
347 self._sun_dir = gui.VectorEdit()
348 self._sun_dir.set_on_value_changed(self._on_sun_dir)
349 self._sun_color = gui.ColorEdit()
350 self._sun_color.set_on_value_changed(self._on_sun_color)
351 grid = gui.VGrid(2, 0.25 * em)
352 grid.add_child(gui.Label("Intensity"))
353 grid.add_child(self._sun_intensity)
354 grid.add_child(gui.Label("Direction"))
355 grid.add_child(self._sun_dir)
356 grid.add_child(gui.Label("Color"))
357 grid.add_child(self._sun_color)
358 advanced.add_fixed(separation_height)
359 advanced.add_child(gui.Label("Sun (Directional light)"))
360 advanced.add_child(grid)
361
362 self._settings_panel.add_fixed(separation_height)
363 self._settings_panel.add_child(advanced)
364
365 material_settings = gui.CollapsableVert("Material settings", 0,
366 gui.Margins(em, 0, 0, 0))
367
368 self._shader = gui.Combobox()
369 self._shader.add_item(AppWindow.MATERIAL_NAMES[0])
370 self._shader.add_item(AppWindow.MATERIAL_NAMES[1])
371 self._shader.add_item(AppWindow.MATERIAL_NAMES[2])
372 self._shader.add_item(AppWindow.MATERIAL_NAMES[3])
373 self._shader.set_on_selection_changed(self._on_shader)
374 self._material_prefab = gui.Combobox()
375 for prefab_name in sorted(Settings.PREFAB.keys()):
376 self._material_prefab.add_item(prefab_name)
377 self._material_prefab.selected_text = Settings.DEFAULT_MATERIAL_NAME
378 self._material_prefab.set_on_selection_changed(self._on_material_prefab)
379 self._material_color = gui.ColorEdit()
380 self._material_color.set_on_value_changed(self._on_material_color)
381 self._point_size = gui.Slider(gui.Slider.INT)
382 self._point_size.set_limits(1, 10)
383 self._point_size.set_on_value_changed(self._on_point_size)
384
385 grid = gui.VGrid(2, 0.25 * em)
386 grid.add_child(gui.Label("Type"))
387 grid.add_child(self._shader)
388 grid.add_child(gui.Label("Material"))
389 grid.add_child(self._material_prefab)
390 grid.add_child(gui.Label("Color"))
391 grid.add_child(self._material_color)
392 grid.add_child(gui.Label("Point size"))
393 grid.add_child(self._point_size)
394 material_settings.add_child(grid)
395
396 self._settings_panel.add_fixed(separation_height)
397 self._settings_panel.add_child(material_settings)
398 # ----
399
400 # Normally our user interface can be children of all one layout (usually
401 # a vertical layout), which is then the only child of the window. In our
402 # case we want the scene to take up all the space and the settings panel
403 # to go above it. We can do this custom layout by providing an on_layout
404 # callback. The on_layout callback should set the frame
405 # (position + size) of every child correctly. After the callback is
406 # done the window will layout the grandchildren.
407 w.set_on_layout(self._on_layout)
408 w.add_child(self._scene)
409 w.add_child(self._settings_panel)
410
411 # ---- Menu ----
412 # The menu is global (because the macOS menu is global), so only create
413 # it once, no matter how many windows are created
414 if gui.Application.instance.menubar is None:
415 if isMacOS:
416 app_menu = gui.Menu()
417 app_menu.add_item("About", AppWindow.MENU_ABOUT)
418 app_menu.add_separator()
419 app_menu.add_item("Quit", AppWindow.MENU_QUIT)
420 file_menu = gui.Menu()
421 file_menu.add_item("Open...", AppWindow.MENU_OPEN)
422 file_menu.add_item("Export Current Image...", AppWindow.MENU_EXPORT)
423 if not isMacOS:
424 file_menu.add_separator()
425 file_menu.add_item("Quit", AppWindow.MENU_QUIT)
426 settings_menu = gui.Menu()
427 settings_menu.add_item("Lighting & Materials",
428 AppWindow.MENU_SHOW_SETTINGS)
429 settings_menu.set_checked(AppWindow.MENU_SHOW_SETTINGS, True)
430 help_menu = gui.Menu()
431 help_menu.add_item("About", AppWindow.MENU_ABOUT)
432
433 menu = gui.Menu()
434 if isMacOS:
435 # macOS will name the first menu item for the running application
436 # (in our case, probably "Python"), regardless of what we call
437 # it. This is the application menu, and it is where the
438 # About..., Preferences..., and Quit menu items typically go.
439 menu.add_menu("Example", app_menu)
440 menu.add_menu("File", file_menu)
441 menu.add_menu("Settings", settings_menu)
442 # Don't include help menu unless it has something more than
443 # About...
444 else:
445 menu.add_menu("File", file_menu)
446 menu.add_menu("Settings", settings_menu)
447 menu.add_menu("Help", help_menu)
448 gui.Application.instance.menubar = menu
449
450 # The menubar is global, but we need to connect the menu items to the
451 # window, so that the window can call the appropriate function when the
452 # menu item is activated.
453 w.set_on_menu_item_activated(AppWindow.MENU_OPEN, self._on_menu_open)
454 w.set_on_menu_item_activated(AppWindow.MENU_EXPORT,
455 self._on_menu_export)
456 w.set_on_menu_item_activated(AppWindow.MENU_QUIT, self._on_menu_quit)
457 w.set_on_menu_item_activated(AppWindow.MENU_SHOW_SETTINGS,
458 self._on_menu_toggle_settings_panel)
459 w.set_on_menu_item_activated(AppWindow.MENU_ABOUT, self._on_menu_about)
460 # ----
461
462 self._apply_settings()
463
464 def _apply_settings(self):
465 bg_color = [
466 self.settings.bg_color.red, self.settings.bg_color.green,
467 self.settings.bg_color.blue, self.settings.bg_color.alpha
468 ]
469 self._scene.scene.set_background(bg_color)
470 self._scene.scene.show_skybox(self.settings.show_skybox)
471 self._scene.scene.show_axes(self.settings.show_axes)
472 if self.settings.new_ibl_name is not None:
473 self._scene.scene.scene.set_indirect_light(
474 self.settings.new_ibl_name)
475 # Clear new_ibl_name, so we don't keep reloading this image every
476 # time the settings are applied.
477 self.settings.new_ibl_name = None
478 self._scene.scene.scene.enable_indirect_light(self.settings.use_ibl)
479 self._scene.scene.scene.set_indirect_light_intensity(
480 self.settings.ibl_intensity)
481 sun_color = [
482 self.settings.sun_color.red, self.settings.sun_color.green,
483 self.settings.sun_color.blue
484 ]
485 self._scene.scene.scene.set_sun_light(self.settings.sun_dir, sun_color,
486 self.settings.sun_intensity)
487 self._scene.scene.scene.enable_sun_light(self.settings.use_sun)
488
489 if self.settings.apply_material:
490 self._scene.scene.update_material(self.settings.material)
491 self.settings.apply_material = False
492
493 self._bg_color.color_value = self.settings.bg_color
494 self._show_skybox.checked = self.settings.show_skybox
495 self._show_axes.checked = self.settings.show_axes
496 self._use_ibl.checked = self.settings.use_ibl
497 self._use_sun.checked = self.settings.use_sun
498 self._ibl_intensity.int_value = self.settings.ibl_intensity
499 self._sun_intensity.int_value = self.settings.sun_intensity
500 self._sun_dir.vector_value = self.settings.sun_dir
501 self._sun_color.color_value = self.settings.sun_color
502 self._material_prefab.enabled = (
503 self.settings.material.shader == Settings.LIT)
504 c = gui.Color(self.settings.material.base_color[0],
505 self.settings.material.base_color[1],
506 self.settings.material.base_color[2],
507 self.settings.material.base_color[3])
508 self._material_color.color_value = c
509 self._point_size.double_value = self.settings.material.point_size
510
511 def _on_layout(self, layout_context):
512 # The on_layout callback should set the frame (position + size) of every
513 # child correctly. After the callback is done the window will layout
514 # the grandchildren.
515 r = self.window.content_rect
516 self._scene.frame = r
517 width = 17 * layout_context.theme.font_size
518 height = min(
519 r.height,
520 self._settings_panel.calc_preferred_size(
521 layout_context, gui.Widget.Constraints()).height)
522 self._settings_panel.frame = gui.Rect(r.get_right() - width, r.y, width,
523 height)
524
525 def _set_mouse_mode_rotate(self):
526 self._scene.set_view_controls(gui.SceneWidget.Controls.ROTATE_CAMERA)
527
528 def _set_mouse_mode_fly(self):
529 self._scene.set_view_controls(gui.SceneWidget.Controls.FLY)
530
531 def _set_mouse_mode_sun(self):
532 self._scene.set_view_controls(gui.SceneWidget.Controls.ROTATE_SUN)
533
534 def _set_mouse_mode_ibl(self):
535 self._scene.set_view_controls(gui.SceneWidget.Controls.ROTATE_IBL)
536
537 def _set_mouse_mode_model(self):
538 self._scene.set_view_controls(gui.SceneWidget.Controls.ROTATE_MODEL)
539
540 def _on_bg_color(self, new_color):
541 self.settings.bg_color = new_color
542 self._apply_settings()
543
544 def _on_show_skybox(self, show):
545 self.settings.show_skybox = show
546 self._apply_settings()
547
548 def _on_show_axes(self, show):
549 self.settings.show_axes = show
550 self._apply_settings()
551
552 def _on_use_ibl(self, use):
553 self.settings.use_ibl = use
554 self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
555 self._apply_settings()
556
557 def _on_use_sun(self, use):
558 self.settings.use_sun = use
559 self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
560 self._apply_settings()
561
562 def _on_lighting_profile(self, name, index):
563 if name != Settings.CUSTOM_PROFILE_NAME:
564 self.settings.apply_lighting_profile(name)
565 self._apply_settings()
566
567 def _on_new_ibl(self, name, index):
568 self.settings.new_ibl_name = gui.Application.instance.resource_path + "/" + name
569 self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
570 self._apply_settings()
571
572 def _on_ibl_intensity(self, intensity):
573 self.settings.ibl_intensity = int(intensity)
574 self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
575 self._apply_settings()
576
577 def _on_sun_intensity(self, intensity):
578 self.settings.sun_intensity = int(intensity)
579 self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
580 self._apply_settings()
581
582 def _on_sun_dir(self, sun_dir):
583 self.settings.sun_dir = sun_dir
584 self._profiles.selected_text = Settings.CUSTOM_PROFILE_NAME
585 self._apply_settings()
586
587 def _on_sun_color(self, color):
588 self.settings.sun_color = color
589 self._apply_settings()
590
591 def _on_shader(self, name, index):
592 self.settings.set_material(AppWindow.MATERIAL_SHADERS[index])
593 self._apply_settings()
594
595 def _on_material_prefab(self, name, index):
596 self.settings.apply_material_prefab(name)
597 self.settings.apply_material = True
598 self._apply_settings()
599
600 def _on_material_color(self, color):
601 self.settings.material.base_color = [
602 color.red, color.green, color.blue, color.alpha
603 ]
604 self.settings.apply_material = True
605 self._apply_settings()
606
607 def _on_point_size(self, size):
608 self.settings.material.point_size = int(size)
609 self.settings.apply_material = True
610 self._apply_settings()
611
612 def _on_menu_open(self):
613 dlg = gui.FileDialog(gui.FileDialog.OPEN, "Choose file to load",
614 self.window.theme)
615 dlg.add_filter(
616 ".ply .stl .fbx .obj .off .gltf .glb",
617 "Triangle mesh files (.ply, .stl, .fbx, .obj, .off, "
618 ".gltf, .glb)")
619 dlg.add_filter(
620 ".xyz .xyzn .xyzrgb .ply .pcd .pts",
621 "Point cloud files (.xyz, .xyzn, .xyzrgb, .ply, "
622 ".pcd, .pts)")
623 dlg.add_filter(".ply", "Polygon files (.ply)")
624 dlg.add_filter(".stl", "Stereolithography files (.stl)")
625 dlg.add_filter(".fbx", "Autodesk Filmbox files (.fbx)")
626 dlg.add_filter(".obj", "Wavefront OBJ files (.obj)")
627 dlg.add_filter(".off", "Object file format (.off)")
628 dlg.add_filter(".gltf", "OpenGL transfer files (.gltf)")
629 dlg.add_filter(".glb", "OpenGL binary transfer files (.glb)")
630 dlg.add_filter(".xyz", "ASCII point cloud files (.xyz)")
631 dlg.add_filter(".xyzn", "ASCII point cloud with normals (.xyzn)")
632 dlg.add_filter(".xyzrgb",
633 "ASCII point cloud files with colors (.xyzrgb)")
634 dlg