open3d.ml.torch.pipelines.SemanticSegmentation¶
-
class
open3d.ml.torch.pipelines.SemanticSegmentation(model, dataset=None, name='SemanticSegmentation', batch_size=4, val_batch_size=4, test_batch_size=3, max_epoch=100, learning_rate=0.01, lr_decays=0.95, save_ckpt_freq=20, adam_lr=0.01, scheduler_gamma=0.95, momentum=0.98, main_log_dir='./logs/', device='gpu', split='train', train_sum_dir='train_log', **kwargs)¶ Pipeline for semantic segmentation.
-
__init__(model, dataset=None, name='SemanticSegmentation', batch_size=4, val_batch_size=4, test_batch_size=3, max_epoch=100, learning_rate=0.01, lr_decays=0.95, save_ckpt_freq=20, adam_lr=0.01, scheduler_gamma=0.95, momentum=0.98, main_log_dir='./logs/', device='gpu', split='train', train_sum_dir='train_log', **kwargs)¶ Initialize.
- Parameters
model – A network model.
dataset – A dataset, or None for inference model.
devce – ‘gpu’ or ‘cpu’.
kwargs –
- Returns
The corresponding class.
- Return type
class
-
get_batcher(device, split='training')¶
-
load_ckpt(ckpt_path=None, is_resume=True)¶
-
run_inference(data)¶ Run inference on a given data.
- Parameters
data – A raw data.
- Returns
Returns the inference results.
-
run_test()¶ Run testing on test sets.
-
run_train()¶ Run training on train sets
-
save_ckpt(epoch)¶
-
save_config(writer)¶ Save experiment configuration with tensorboard summary
-
save_logs(writer, epoch)¶
-