open3d.ml.torch.vis.Visualizer¶
-
class
open3d.ml.torch.vis.Visualizer¶ The visualizer class for dataset objects and custom point clouds.
-
class
ColormapEdit(window, em)¶ This class is used to create a color map for visualization of points.
-
__init__(window, em)¶ Initialize self. See help(type(self)) for accurate signature.
-
set_on_changed(callback)¶
-
update(colormap, min_val, max_val)¶
-
-
class
LabelLUTEdit¶ This class includes functionality for managing a labellut (label look-up-table).
-
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
-
clear()¶
-
get_colors()¶
-
is_empty()¶
-
set_labels(labellut)¶
-
set_on_changed(callback)¶
-
-
class
ProgressDialog(title, window, n_items)¶ This class is used to manage the progress dialog displayed during visualization. Initialize the class. Args:
title: The title of the dialog box. window: The window where the progress dialog box should be displayed. n_items: The maximum number of items.
-
__init__(title, window, n_items)¶ Initialize self. See help(type(self)) for accurate signature.
-
post_update(text=None)¶
-
set_text(text)¶
-
update()¶
-
-
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
-
set_lut(attr_name, lut)¶
-
setup_camera()¶
-
show_geometries_under(name, show)¶
-
visualize(data, lut=None, bounding_boxes=None, width=1024, height=768)¶ Visualize a custom point cloud data.
- Example:
Minimal example for visualizing a single point cloud with an attribute:
import numpy as np import open3d.ml.torch as ml3d # or import open3d.ml.tf as ml3d data = [ { 'name': 'my_point_cloud', 'points': np.random.rand(100,3).astype(np.float32), 'point_attr1': np.random.rand(100).astype(np.float32), } ] vis = ml3d.vis.Visualizer() vis.visualize(data)
- Args:
- data: A list of dictionaries. Each dictionary is a point cloud with
attributes. Each dictionary must have the entries ‘name’ and ‘points’. Points and point attributes can be passed as numpy arrays, PyTorch tensors or TensorFlow tensors.
width: window width. height: window height.
-
visualize_dataset(dataset, split, indices=None, width=1024, height=768)¶ Visualize a dataset.
- Example:
- Minimal example for visualizing a dataset::
import open3d.ml.torch as ml3d # or open3d.ml.tf as ml3d
dataset = ml3d.datasets.SemanticKITTI(dataset_path=’/path/to/SemanticKITTI/’) vis = ml3d.vis.Visualizer() vis.visualize_dataset(dataset, ‘all’, indices=range(100))
- Args:
dataset: The dataset to use for visualization. split: The dataset split to be used, such as ‘training’ indices: An iterable with a subset of the data points to visualize, such as [0,2,3,4]. width: The width of the visualization window. height: The height of the visualization window.
-
COLOR_NAME= 'RGB'¶
-
GREYSCALE_NAME= 'Colormap (Greyscale)'¶
-
LABELS_NAME= 'Label Colormap'¶
-
RAINBOW_NAME= 'Colormap (Rainbow)'¶
-
SOLID_NAME= 'Solid Color'¶
-
X_ATTR_NAME= 'x position'¶
-
Y_ATTR_NAME= 'y position'¶
-
Z_ATTR_NAME= 'z position'¶
-
class