open3d.ml.torch.vis.DatasetModel¶
-
class
open3d.ml.torch.vis.DatasetModel(dataset, split, indices)¶ The class used to manage a dataset model. Args:
dataset: The 3D ML dataset to use. You can use the base dataset, sample datasets , or a custom dataset. split: A string identifying the dataset split that is usually one of ‘training’, ‘test’, ‘validation’, or ‘all’. indices: The indices to be used for the datamodel. This may vary based on the split used.
-
class
BoundingBoxData(name, boxes)¶ The class to define a bounding box that is used to describe the target location. Args:
name: The name of the pointcloud array. boxes: The array of pointcloud that define the bounding box.
-
__init__(name, boxes)¶ Initialize self. See help(type(self)) for accurate signature.
-
-
__init__(dataset, split, indices)¶ Initialize self. See help(type(self)) for accurate signature.
-
calc_bounds_for(name)¶
-
create_point_cloud(data)¶
-
get_attr(name, attr_name)¶
-
get_attr_minmax(attr_name, channel)¶
-
get_attr_shape(name, attr_name)¶
-
get_available_attrs(names)¶
-
is_loaded(name)¶
-
load(name, fail_if_no_space=False)¶
-
unload(name)¶
-
bounding_box_prefix= 'Bounding Boxes/'¶
-
class