Loading [MathJax]/extensions/TeX/AMSsymbols.js
Open3D (C++ API)  0.15.1
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
VoxelBlockGridImpl.h
Go to the documentation of this file.
1 // ----------------------------------------------------------------------------
2 // - Open3D: www.open3d.org -
3 // ----------------------------------------------------------------------------
4 // The MIT License (MIT)
5 //
6 // Copyright (c) 2018-2021 www.open3d.org
7 //
8 // Permission is hereby granted, free of charge, to any person obtaining a copy
9 // of this software and associated documentation files (the "Software"), to deal
10 // in the Software without restriction, including without limitation the rights
11 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 // copies of the Software, and to permit persons to whom the Software is
13 // furnished to do so, subject to the following conditions:
14 //
15 // The above copyright notice and this permission notice shall be included in
16 // all copies or substantial portions of the Software.
17 //
18 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 // IN THE SOFTWARE.
25 // ----------------------------------------------------------------------------
26 
27 #include <atomic>
28 #include <cmath>
29 
30 #include "open3d/core/Dispatch.h"
31 #include "open3d/core/Dtype.h"
33 #include "open3d/core/SizeVector.h"
34 #include "open3d/core/Tensor.h"
40 #include "open3d/utility/Logging.h"
41 #include "open3d/utility/Timer.h"
42 
43 namespace open3d {
44 namespace t {
45 namespace geometry {
46 namespace kernel {
47 namespace voxel_grid {
48 
49 using index_t = int;
51 
52 #if defined(__CUDACC__)
53 void GetVoxelCoordinatesAndFlattenedIndicesCUDA
54 #else
56 #endif
57  (const core::Tensor& buf_indices,
58  const core::Tensor& block_keys,
59  core::Tensor& voxel_coords,
60  core::Tensor& flattened_indices,
61  index_t resolution,
62  float voxel_size) {
63  core::Device device = buf_indices.GetDevice();
64 
65  const index_t* buf_indices_ptr = buf_indices.GetDataPtr<index_t>();
66  const index_t* block_key_ptr = block_keys.GetDataPtr<index_t>();
67 
68  float* voxel_coords_ptr = voxel_coords.GetDataPtr<float>();
69  int64_t* flattened_indices_ptr = flattened_indices.GetDataPtr<int64_t>();
70 
71  index_t n = flattened_indices.GetLength();
72  ArrayIndexer voxel_indexer({resolution, resolution, resolution});
73  index_t resolution3 = resolution * resolution * resolution;
74 
75  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t workload_idx) {
76  index_t block_idx = buf_indices_ptr[workload_idx / resolution3];
77  index_t voxel_idx = workload_idx % resolution3;
78 
79  index_t block_key_offset = block_idx * 3;
80  index_t xb = block_key_ptr[block_key_offset + 0];
81  index_t yb = block_key_ptr[block_key_offset + 1];
82  index_t zb = block_key_ptr[block_key_offset + 2];
83 
84  index_t xv, yv, zv;
85  voxel_indexer.WorkloadToCoord(voxel_idx, &xv, &yv, &zv);
86 
87  float x = (xb * resolution + xv) * voxel_size;
88  float y = (yb * resolution + yv) * voxel_size;
89  float z = (zb * resolution + zv) * voxel_size;
90 
91  flattened_indices_ptr[workload_idx] =
92  block_idx * resolution3 + voxel_idx;
93 
94  index_t voxel_coords_offset = workload_idx * 3;
95  voxel_coords_ptr[voxel_coords_offset + 0] = x;
96  voxel_coords_ptr[voxel_coords_offset + 1] = y;
97  voxel_coords_ptr[voxel_coords_offset + 2] = z;
98  });
99 }
100 
101 inline OPEN3D_DEVICE index_t
103  index_t yo,
104  index_t zo,
105  index_t curr_block_idx,
106  index_t resolution,
107  const ArrayIndexer& nb_block_masks_indexer,
108  const ArrayIndexer& nb_block_indices_indexer) {
109  index_t xn = (xo + resolution) % resolution;
110  index_t yn = (yo + resolution) % resolution;
111  index_t zn = (zo + resolution) % resolution;
112 
113  index_t dxb = Sign(xo - xn);
114  index_t dyb = Sign(yo - yn);
115  index_t dzb = Sign(zo - zn);
116 
117  index_t nb_idx = (dxb + 1) + (dyb + 1) * 3 + (dzb + 1) * 9;
118 
119  bool block_mask_i =
120  *nb_block_masks_indexer.GetDataPtr<bool>(curr_block_idx, nb_idx);
121  if (!block_mask_i) return -1;
122 
123  index_t block_idx_i = *nb_block_indices_indexer.GetDataPtr<index_t>(
124  curr_block_idx, nb_idx);
125 
126  return (((block_idx_i * resolution) + zn) * resolution + yn) * resolution +
127  xn;
128 }
129 
130 template <typename tsdf_t>
132  const tsdf_t* tsdf_base_ptr,
133  index_t xo,
134  index_t yo,
135  index_t zo,
136  index_t curr_block_idx,
137  float* n,
138  index_t resolution,
139  const ArrayIndexer& nb_block_masks_indexer,
140  const ArrayIndexer& nb_block_indices_indexer) {
141  auto GetLinearIdx = [&] OPEN3D_DEVICE(index_t xo, index_t yo,
142  index_t zo) -> index_t {
143  return DeviceGetLinearIdx(xo, yo, zo, curr_block_idx, resolution,
144  nb_block_masks_indexer,
145  nb_block_indices_indexer);
146  };
147  index_t vxp = GetLinearIdx(xo + 1, yo, zo);
148  index_t vxn = GetLinearIdx(xo - 1, yo, zo);
149  index_t vyp = GetLinearIdx(xo, yo + 1, zo);
150  index_t vyn = GetLinearIdx(xo, yo - 1, zo);
151  index_t vzp = GetLinearIdx(xo, yo, zo + 1);
152  index_t vzn = GetLinearIdx(xo, yo, zo - 1);
153  if (vxp >= 0 && vxn >= 0) n[0] = tsdf_base_ptr[vxp] - tsdf_base_ptr[vxn];
154  if (vyp >= 0 && vyn >= 0) n[1] = tsdf_base_ptr[vyp] - tsdf_base_ptr[vyn];
155  if (vzp >= 0 && vzn >= 0) n[2] = tsdf_base_ptr[vzp] - tsdf_base_ptr[vzn];
156 };
157 
158 template <typename input_depth_t,
159  typename input_color_t,
160  typename tsdf_t,
161  typename weight_t,
162  typename color_t>
163 #if defined(__CUDACC__)
164 void IntegrateCUDA
165 #else
166 void IntegrateCPU
167 #endif
168  (const core::Tensor& depth,
169  const core::Tensor& color,
170  const core::Tensor& indices,
171  const core::Tensor& block_keys,
172  TensorMap& block_value_map,
173  const core::Tensor& depth_intrinsic,
174  const core::Tensor& color_intrinsic,
175  const core::Tensor& extrinsics,
176  index_t resolution,
177  float voxel_size,
178  float sdf_trunc,
179  float depth_scale,
180  float depth_max) {
181  // Parameters
182  index_t resolution2 = resolution * resolution;
183  index_t resolution3 = resolution2 * resolution;
184 
185  TransformIndexer transform_indexer(depth_intrinsic, extrinsics, voxel_size);
186  TransformIndexer colormap_indexer(
187  color_intrinsic,
189 
190  ArrayIndexer voxel_indexer({resolution, resolution, resolution});
191 
192  ArrayIndexer block_keys_indexer(block_keys, 1);
193  ArrayIndexer depth_indexer(depth, 2);
194  core::Device device = block_keys.GetDevice();
195 
196  const index_t* indices_ptr = indices.GetDataPtr<index_t>();
197 
198  if (!block_value_map.Contains("tsdf") ||
199  !block_value_map.Contains("weight")) {
201  "TSDF and/or weight not allocated in blocks, please implement "
202  "customized integration.");
203  }
204  tsdf_t* tsdf_base_ptr = block_value_map.at("tsdf").GetDataPtr<tsdf_t>();
205  weight_t* weight_base_ptr =
206  block_value_map.at("weight").GetDataPtr<weight_t>();
207 
208  bool integrate_color =
209  block_value_map.Contains("color") && color.NumElements() > 0;
210  color_t* color_base_ptr = nullptr;
211  ArrayIndexer color_indexer;
212 
213  float color_multiplier = 1.0;
214  if (integrate_color) {
215  color_base_ptr = block_value_map.at("color").GetDataPtr<color_t>();
216  color_indexer = ArrayIndexer(color, 2);
217 
218  // Float32: [0, 1] -> [0, 255]
219  if (color.GetDtype() == core::Float32) {
220  color_multiplier = 255.0;
221  }
222  }
223 
224  index_t n = indices.GetLength() * resolution3;
225  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t workload_idx) {
226  // Natural index (0, N) -> (block_idx, voxel_idx)
227  index_t block_idx = indices_ptr[workload_idx / resolution3];
228  index_t voxel_idx = workload_idx % resolution3;
229 
231  // block_idx -> (x_block, y_block, z_block)
232  index_t* block_key_ptr =
233  block_keys_indexer.GetDataPtr<index_t>(block_idx);
234  index_t xb = block_key_ptr[0];
235  index_t yb = block_key_ptr[1];
236  index_t zb = block_key_ptr[2];
237 
238  // voxel_idx -> (x_voxel, y_voxel, z_voxel)
239  index_t xv, yv, zv;
240  voxel_indexer.WorkloadToCoord(voxel_idx, &xv, &yv, &zv);
241 
242  // coordinate in world (in voxel)
243  index_t x = xb * resolution + xv;
244  index_t y = yb * resolution + yv;
245  index_t z = zb * resolution + zv;
246 
247  // coordinate in camera (in voxel -> in meter)
248  float xc, yc, zc, u, v;
249  transform_indexer.RigidTransform(static_cast<float>(x),
250  static_cast<float>(y),
251  static_cast<float>(z), &xc, &yc, &zc);
252 
253  // coordinate in image (in pixel)
254  transform_indexer.Project(xc, yc, zc, &u, &v);
255  if (!depth_indexer.InBoundary(u, v)) {
256  return;
257  }
258 
259  index_t ui = static_cast<index_t>(u);
260  index_t vi = static_cast<index_t>(v);
261 
262  // Associate image workload and compute SDF and
263  // TSDF.
264  float depth =
265  *depth_indexer.GetDataPtr<input_depth_t>(ui, vi) / depth_scale;
266 
267  float sdf = depth - zc;
268  if (depth <= 0 || depth > depth_max || zc <= 0 || sdf < -sdf_trunc) {
269  return;
270  }
271  sdf = sdf < sdf_trunc ? sdf : sdf_trunc;
272  sdf /= sdf_trunc;
273 
274  index_t linear_idx = block_idx * resolution3 + voxel_idx;
275 
276  tsdf_t* tsdf_ptr = tsdf_base_ptr + linear_idx;
277  weight_t* weight_ptr = weight_base_ptr + linear_idx;
278 
279  float inv_wsum = 1.0f / (*weight_ptr + 1);
280  float weight = *weight_ptr;
281  *tsdf_ptr = (weight * (*tsdf_ptr) + sdf) * inv_wsum;
282 
283  if (integrate_color) {
284  color_t* color_ptr = color_base_ptr + 3 * linear_idx;
285 
286  // Unproject ui, vi with depth_intrinsic, then project back with
287  // color_intrinsic
288  float x, y, z;
289  transform_indexer.Unproject(ui, vi, 1.0, &x, &y, &z);
290 
291  float uf, vf;
292  colormap_indexer.Project(x, y, z, &uf, &vf);
293  if (color_indexer.InBoundary(uf, vf)) {
294  ui = round(uf);
295  vi = round(vf);
296 
297  input_color_t* input_color_ptr =
298  color_indexer.GetDataPtr<input_color_t>(ui, vi);
299 
300  for (index_t i = 0; i < 3; ++i) {
301  color_ptr[i] = (weight * color_ptr[i] +
302  input_color_ptr[i] * color_multiplier) *
303  inv_wsum;
304  }
305  }
306  }
307  *weight_ptr = weight + 1;
308  });
309 
310 #if defined(__CUDACC__)
312 #endif
313 }
314 
315 #if defined(__CUDACC__)
316 void EstimateRangeCUDA
317 #else
318 void EstimateRangeCPU
319 #endif
320  (const core::Tensor& block_keys,
321  core::Tensor& range_minmax_map,
322  const core::Tensor& intrinsics,
323  const core::Tensor& extrinsics,
324  int h,
325  int w,
326  int down_factor,
327  int64_t block_resolution,
328  float voxel_size,
329  float depth_min,
330  float depth_max) {
331 
332  // TODO(wei): reserve it in a reusable buffer
333 
334  // Every 2 channels: (min, max)
335  int h_down = h / down_factor;
336  int w_down = w / down_factor;
337  range_minmax_map = core::Tensor({h_down, w_down, 2}, core::Float32,
338  block_keys.GetDevice());
339  NDArrayIndexer range_map_indexer(range_minmax_map, 2);
340 
341  // Every 6 channels: (v_min, u_min, v_max, u_max, z_min, z_max)
342  const int fragment_size = 16;
343  const int frag_buffer_size = 65535;
344 
345  // TODO(wei): explicit buffer
346  core::Tensor fragment_buffer = core::Tensor(
347  {frag_buffer_size, 6}, core::Float32, block_keys.GetDevice());
348 
349  NDArrayIndexer frag_buffer_indexer(fragment_buffer, 1);
350  NDArrayIndexer block_keys_indexer(block_keys, 1);
351  TransformIndexer w2c_transform_indexer(intrinsics, extrinsics);
352 #if defined(__CUDACC__)
353  core::Tensor count(std::vector<int>{0}, {1}, core::Int32,
354  block_keys.GetDevice());
355  int* count_ptr = count.GetDataPtr<int>();
356 #else
357  std::atomic<int> count_atomic(0);
358  std::atomic<int>* count_ptr = &count_atomic;
359 #endif
360 
361 #ifndef __CUDACC__
362  using std::max;
363  using std::min;
364 #endif
365 
366  // Pass 0: iterate over blocks, fill-in an rendering fragment array
368  block_keys.GetDevice(), block_keys.GetLength(),
369  [=] OPEN3D_DEVICE(int64_t workload_idx) {
370  int* key = block_keys_indexer.GetDataPtr<int>(workload_idx);
371 
372  int u_min = w_down - 1, v_min = h_down - 1, u_max = 0,
373  v_max = 0;
374  float z_min = depth_max, z_max = depth_min;
375 
376  float xc, yc, zc, u, v;
377 
378  // Project 8 corners to low-res image and form a rectangle
379  for (int i = 0; i < 8; ++i) {
380  float xw = (key[0] + ((i & 1) > 0)) * block_resolution *
381  voxel_size;
382  float yw = (key[1] + ((i & 2) > 0)) * block_resolution *
383  voxel_size;
384  float zw = (key[2] + ((i & 4) > 0)) * block_resolution *
385  voxel_size;
386 
387  w2c_transform_indexer.RigidTransform(xw, yw, zw, &xc, &yc,
388  &zc);
389  if (zc <= 0) continue;
390 
391  // Project to the down sampled image buffer
392  w2c_transform_indexer.Project(xc, yc, zc, &u, &v);
393  u /= down_factor;
394  v /= down_factor;
395 
396  v_min = min(static_cast<int>(floorf(v)), v_min);
397  v_max = max(static_cast<int>(ceilf(v)), v_max);
398 
399  u_min = min(static_cast<int>(floorf(u)), u_min);
400  u_max = max(static_cast<int>(ceilf(u)), u_max);
401 
402  z_min = min(z_min, zc);
403  z_max = max(z_max, zc);
404  }
405 
406  v_min = max(0, v_min);
407  v_max = min(h_down - 1, v_max);
408 
409  u_min = max(0, u_min);
410  u_max = min(w_down - 1, u_max);
411 
412  if (v_min >= v_max || u_min >= u_max || z_min >= z_max) return;
413 
414  // Divide the rectangle into small 16x16 fragments
415  int frag_v_count =
416  ceilf(float(v_max - v_min + 1) / float(fragment_size));
417  int frag_u_count =
418  ceilf(float(u_max - u_min + 1) / float(fragment_size));
419 
420  int frag_count = frag_v_count * frag_u_count;
421  int frag_count_start = OPEN3D_ATOMIC_ADD(count_ptr, 1);
422  int frag_count_end = frag_count_start + frag_count;
423  if (frag_count_end >= frag_buffer_size) {
424  printf("Fragment count exceeding buffer size, abort!\n");
425  }
426 
427  int offset = 0;
428  for (int frag_v = 0; frag_v < frag_v_count; ++frag_v) {
429  for (int frag_u = 0; frag_u < frag_u_count;
430  ++frag_u, ++offset) {
431  float* frag_ptr = frag_buffer_indexer.GetDataPtr<float>(
432  frag_count_start + offset);
433  // zmin, zmax
434  frag_ptr[0] = z_min;
435  frag_ptr[1] = z_max;
436 
437  // vmin, umin
438  frag_ptr[2] = v_min + frag_v * fragment_size;
439  frag_ptr[3] = u_min + frag_u * fragment_size;
440 
441  // vmax, umax
442  frag_ptr[4] = min(frag_ptr[2] + fragment_size - 1,
443  static_cast<float>(v_max));
444  frag_ptr[5] = min(frag_ptr[3] + fragment_size - 1,
445  static_cast<float>(u_max));
446  }
447  }
448  });
449 #if defined(__CUDACC__)
450  int frag_count = count[0].Item<int>();
451 #else
452  int frag_count = (*count_ptr).load();
453 #endif
454 
455  // Pass 0.5: Fill in range map to prepare for atomic min/max
456  core::ParallelFor(block_keys.GetDevice(), h_down * w_down,
457  [=] OPEN3D_DEVICE(int64_t workload_idx) {
458  int v = workload_idx / w_down;
459  int u = workload_idx % w_down;
460  float* range_ptr =
461  range_map_indexer.GetDataPtr<float>(u, v);
462  range_ptr[0] = depth_max;
463  range_ptr[1] = depth_min;
464  });
465 
466  // Pass 1: iterate over rendering fragment array, fill-in range
468  block_keys.GetDevice(), frag_count * fragment_size * fragment_size,
469  [=] OPEN3D_DEVICE(int64_t workload_idx) {
470  int frag_idx = workload_idx / (fragment_size * fragment_size);
471  int local_idx = workload_idx % (fragment_size * fragment_size);
472  int dv = local_idx / fragment_size;
473  int du = local_idx % fragment_size;
474 
475  float* frag_ptr =
476  frag_buffer_indexer.GetDataPtr<float>(frag_idx);
477  int v_min = static_cast<int>(frag_ptr[2]);
478  int u_min = static_cast<int>(frag_ptr[3]);
479  int v_max = static_cast<int>(frag_ptr[4]);
480  int u_max = static_cast<int>(frag_ptr[5]);
481 
482  int v = v_min + dv;
483  int u = u_min + du;
484  if (v > v_max || u > u_max) return;
485 
486  float z_min = frag_ptr[0];
487  float z_max = frag_ptr[1];
488  float* range_ptr = range_map_indexer.GetDataPtr<float>(u, v);
489 #ifdef __CUDACC__
490  atomicMinf(&(range_ptr[0]), z_min);
491  atomicMaxf(&(range_ptr[1]), z_max);
492 #else
493 #pragma omp critical(EstimateRangeCPU)
494  {
495  range_ptr[0] = min(z_min, range_ptr[0]);
496  range_ptr[1] = max(z_max, range_ptr[1]);
497  }
498 #endif
499  });
500 #if defined(__CUDACC__)
502 #endif
503 }
504 
505 struct MiniVecCache {
510 
512  return (xin == x && yin == y && zin == z) ? block_idx : -1;
513  }
514 
515  inline void OPEN3D_DEVICE Update(index_t xin,
516  index_t yin,
517  index_t zin,
518  index_t block_idx_in) {
519  x = xin;
520  y = yin;
521  z = zin;
522  block_idx = block_idx_in;
523  }
524 };
525 
526 template <typename tsdf_t, typename weight_t, typename color_t>
527 #if defined(__CUDACC__)
528 void RayCastCUDA
529 #else
530 void RayCastCPU
531 #endif
532  (std::shared_ptr<core::HashMap>& hashmap,
533  const TensorMap& block_value_map,
534  const core::Tensor& range,
535  TensorMap& renderings_map,
536  const core::Tensor& intrinsic,
537  const core::Tensor& extrinsics,
538  index_t h,
539  index_t w,
540  index_t block_resolution,
541  float voxel_size,
542  float depth_scale,
543  float depth_min,
544  float depth_max,
545  float weight_threshold,
546  float trunc_voxel_multiplier,
547  int range_map_down_factor) {
548  using Key = utility::MiniVec<index_t, 3>;
551 
552  auto device_hashmap = hashmap->GetDeviceHashBackend();
553 #if defined(__CUDACC__)
554  auto cuda_hashmap =
555  std::dynamic_pointer_cast<core::StdGPUHashBackend<Key, Hash, Eq>>(
556  device_hashmap);
557  if (cuda_hashmap == nullptr) {
559  "Unsupported backend: CUDA raycasting only supports STDGPU.");
560  }
561  auto hashmap_impl = cuda_hashmap->GetImpl();
562 #else
563  auto cpu_hashmap =
564  std::dynamic_pointer_cast<core::TBBHashBackend<Key, Hash, Eq>>(
565  device_hashmap);
566  if (cpu_hashmap == nullptr) {
568  "Unsupported backend: CPU raycasting only supports TBB.");
569  }
570  auto hashmap_impl = *cpu_hashmap->GetImpl();
571 #endif
572 
573  core::Device device = hashmap->GetDevice();
574 
575  ArrayIndexer range_indexer(range, 2);
576 
577  // Geometry
578  ArrayIndexer depth_indexer;
579  ArrayIndexer vertex_indexer;
580  ArrayIndexer normal_indexer;
581 
582  // Diff rendering
583  ArrayIndexer index_indexer;
584  ArrayIndexer mask_indexer;
585  ArrayIndexer interp_ratio_indexer;
586  ArrayIndexer interp_ratio_dx_indexer;
587  ArrayIndexer interp_ratio_dy_indexer;
588  ArrayIndexer interp_ratio_dz_indexer;
589 
590  // Color
591  ArrayIndexer color_indexer;
592 
593  if (!block_value_map.Contains("tsdf") ||
594  !block_value_map.Contains("weight")) {
596  "TSDF and/or weight not allocated in blocks, please implement "
597  "customized integration.");
598  }
599  const tsdf_t* tsdf_base_ptr =
600  block_value_map.at("tsdf").GetDataPtr<tsdf_t>();
601  const weight_t* weight_base_ptr =
602  block_value_map.at("weight").GetDataPtr<weight_t>();
603 
604  // Geometry
605  if (renderings_map.Contains("depth")) {
606  depth_indexer = ArrayIndexer(renderings_map.at("depth"), 2);
607  }
608  if (renderings_map.Contains("vertex")) {
609  vertex_indexer = ArrayIndexer(renderings_map.at("vertex"), 2);
610  }
611  if (renderings_map.Contains("normal")) {
612  normal_indexer = ArrayIndexer(renderings_map.at("normal"), 2);
613  }
614 
615  // Diff rendering
616  if (renderings_map.Contains("index")) {
617  index_indexer = ArrayIndexer(renderings_map.at("index"), 2);
618  }
619  if (renderings_map.Contains("mask")) {
620  mask_indexer = ArrayIndexer(renderings_map.at("mask"), 2);
621  }
622  if (renderings_map.Contains("interp_ratio")) {
623  interp_ratio_indexer =
624  ArrayIndexer(renderings_map.at("interp_ratio"), 2);
625  }
626  if (renderings_map.Contains("interp_ratio_dx")) {
627  interp_ratio_dx_indexer =
628  ArrayIndexer(renderings_map.at("interp_ratio_dx"), 2);
629  }
630  if (renderings_map.Contains("interp_ratio_dy")) {
631  interp_ratio_dy_indexer =
632  ArrayIndexer(renderings_map.at("interp_ratio_dy"), 2);
633  }
634  if (renderings_map.Contains("interp_ratio_dz")) {
635  interp_ratio_dz_indexer =
636  ArrayIndexer(renderings_map.at("interp_ratio_dz"), 2);
637  }
638 
639  // Color
640  bool render_color = false;
641  if (block_value_map.Contains("color") && renderings_map.Contains("color")) {
642  render_color = true;
643  color_indexer = ArrayIndexer(renderings_map.at("color"), 2);
644  }
645  const color_t* color_base_ptr =
646  render_color ? block_value_map.at("color").GetDataPtr<color_t>()
647  : nullptr;
648 
649  bool visit_neighbors = render_color || normal_indexer.GetDataPtr() ||
650  mask_indexer.GetDataPtr() ||
651  index_indexer.GetDataPtr() ||
652  interp_ratio_indexer.GetDataPtr() ||
653  interp_ratio_dx_indexer.GetDataPtr() ||
654  interp_ratio_dy_indexer.GetDataPtr() ||
655  interp_ratio_dz_indexer.GetDataPtr();
656 
657  TransformIndexer c2w_transform_indexer(
658  intrinsic, t::geometry::InverseTransformation(extrinsics));
659  TransformIndexer w2c_transform_indexer(intrinsic, extrinsics);
660 
661  index_t rows = h;
662  index_t cols = w;
663  index_t n = rows * cols;
664 
665  float block_size = voxel_size * block_resolution;
666  index_t resolution2 = block_resolution * block_resolution;
667  index_t resolution3 = resolution2 * block_resolution;
668 
669 #ifndef __CUDACC__
670  using std::max;
671  using std::sqrt;
672 #endif
673 
674  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t workload_idx) {
675  auto GetLinearIdxAtP = [&] OPEN3D_DEVICE(
676  index_t x_b, index_t y_b, index_t z_b,
677  index_t x_v, index_t y_v, index_t z_v,
678  core::buf_index_t block_buf_idx,
679  MiniVecCache & cache) -> index_t {
680  index_t x_vn = (x_v + block_resolution) % block_resolution;
681  index_t y_vn = (y_v + block_resolution) % block_resolution;
682  index_t z_vn = (z_v + block_resolution) % block_resolution;
683 
684  index_t dx_b = Sign(x_v - x_vn);
685  index_t dy_b = Sign(y_v - y_vn);
686  index_t dz_b = Sign(z_v - z_vn);
687 
688  if (dx_b == 0 && dy_b == 0 && dz_b == 0) {
689  return block_buf_idx * resolution3 + z_v * resolution2 +
690  y_v * block_resolution + x_v;
691  } else {
692  Key key(x_b + dx_b, y_b + dy_b, z_b + dz_b);
693 
694  index_t block_buf_idx = cache.Check(key[0], key[1], key[2]);
695  if (block_buf_idx < 0) {
696  auto iter = hashmap_impl.find(key);
697  if (iter == hashmap_impl.end()) return -1;
698  block_buf_idx = iter->second;
699  cache.Update(key[0], key[1], key[2], block_buf_idx);
700  }
701 
702  return block_buf_idx * resolution3 + z_vn * resolution2 +
703  y_vn * block_resolution + x_vn;
704  }
705  };
706 
707  auto GetLinearIdxAtT = [&] OPEN3D_DEVICE(
708  float x_o, float y_o, float z_o,
709  float x_d, float y_d, float z_d, float t,
710  MiniVecCache& cache) -> index_t {
711  float x_g = x_o + t * x_d;
712  float y_g = y_o + t * y_d;
713  float z_g = z_o + t * z_d;
714 
715  // MiniVec coordinate and look up
716  index_t x_b = static_cast<index_t>(floorf(x_g / block_size));
717  index_t y_b = static_cast<index_t>(floorf(y_g / block_size));
718  index_t z_b = static_cast<index_t>(floorf(z_g / block_size));
719 
720  Key key(x_b, y_b, z_b);
721  index_t block_buf_idx = cache.Check(x_b, y_b, z_b);
722  if (block_buf_idx < 0) {
723  auto iter = hashmap_impl.find(key);
724  if (iter == hashmap_impl.end()) return -1;
725  block_buf_idx = iter->second;
726  cache.Update(x_b, y_b, z_b, block_buf_idx);
727  }
728 
729  // Voxel coordinate and look up
730  index_t x_v = index_t((x_g - x_b * block_size) / voxel_size);
731  index_t y_v = index_t((y_g - y_b * block_size) / voxel_size);
732  index_t z_v = index_t((z_g - z_b * block_size) / voxel_size);
733 
734  return block_buf_idx * resolution3 + z_v * resolution2 +
735  y_v * block_resolution + x_v;
736  };
737 
738  index_t y = workload_idx / cols;
739  index_t x = workload_idx % cols;
740 
741  const float* range = range_indexer.GetDataPtr<float>(
742  x / range_map_down_factor, y / range_map_down_factor);
743 
744  float* depth_ptr = nullptr;
745  float* vertex_ptr = nullptr;
746  float* color_ptr = nullptr;
747  float* normal_ptr = nullptr;
748 
749  int64_t* index_ptr = nullptr;
750  bool* mask_ptr = nullptr;
751  float* interp_ratio_ptr = nullptr;
752  float* interp_ratio_dx_ptr = nullptr;
753  float* interp_ratio_dy_ptr = nullptr;
754  float* interp_ratio_dz_ptr = nullptr;
755 
756  if (vertex_indexer.GetDataPtr()) {
757  vertex_ptr = vertex_indexer.GetDataPtr<float>(x, y);
758  vertex_ptr[0] = 0;
759  vertex_ptr[1] = 0;
760  vertex_ptr[2] = 0;
761  }
762  if (depth_indexer.GetDataPtr()) {
763  depth_ptr = depth_indexer.GetDataPtr<float>(x, y);
764  depth_ptr[0] = 0;
765  }
766  if (normal_indexer.GetDataPtr()) {
767  normal_ptr = normal_indexer.GetDataPtr<float>(x, y);
768  normal_ptr[0] = 0;
769  normal_ptr[1] = 0;
770  normal_ptr[2] = 0;
771  }
772 
773  if (mask_indexer.GetDataPtr()) {
774  mask_ptr = mask_indexer.GetDataPtr<bool>(x, y);
775 #ifdef __CUDACC__
776 #pragma unroll
777 #endif
778  for (int i = 0; i < 8; ++i) {
779  mask_ptr[i] = false;
780  }
781  }
782  if (index_indexer.GetDataPtr()) {
783  index_ptr = index_indexer.GetDataPtr<int64_t>(x, y);
784 #ifdef __CUDACC__
785 #pragma unroll
786 #endif
787  for (int i = 0; i < 8; ++i) {
788  index_ptr[i] = 0;
789  }
790  }
791  if (interp_ratio_indexer.GetDataPtr()) {
792  interp_ratio_ptr = interp_ratio_indexer.GetDataPtr<float>(x, y);
793 #ifdef __CUDACC__
794 #pragma unroll
795 #endif
796  for (int i = 0; i < 8; ++i) {
797  interp_ratio_ptr[i] = 0;
798  }
799  }
800  if (interp_ratio_dx_indexer.GetDataPtr()) {
801  interp_ratio_dx_ptr =
802  interp_ratio_dx_indexer.GetDataPtr<float>(x, y);
803 #ifdef __CUDACC__
804 #pragma unroll
805 #endif
806  for (int i = 0; i < 8; ++i) {
807  interp_ratio_dx_ptr[i] = 0;
808  }
809  }
810  if (interp_ratio_dy_indexer.GetDataPtr()) {
811  interp_ratio_dy_ptr =
812  interp_ratio_dy_indexer.GetDataPtr<float>(x, y);
813 #ifdef __CUDACC__
814 #pragma unroll
815 #endif
816  for (int i = 0; i < 8; ++i) {
817  interp_ratio_dy_ptr[i] = 0;
818  }
819  }
820  if (interp_ratio_dz_indexer.GetDataPtr()) {
821  interp_ratio_dz_ptr =
822  interp_ratio_dz_indexer.GetDataPtr<float>(x, y);
823 #ifdef __CUDACC__
824 #pragma unroll
825 #endif
826  for (int i = 0; i < 8; ++i) {
827  interp_ratio_dz_ptr[i] = 0;
828  }
829  }
830 
831  if (color_indexer.GetDataPtr()) {
832  color_ptr = color_indexer.GetDataPtr<float>(x, y);
833  color_ptr[0] = 0;
834  color_ptr[1] = 0;
835  color_ptr[2] = 0;
836  }
837 
838  float t = range[0];
839  const float t_max = range[1];
840  if (t >= t_max) return;
841 
842  // Coordinates in camera and global
843  float x_c = 0, y_c = 0, z_c = 0;
844  float x_g = 0, y_g = 0, z_g = 0;
845  float x_o = 0, y_o = 0, z_o = 0;
846 
847  // Iterative ray intersection check
848  float t_prev = t;
849 
850  float tsdf_prev = -1.0f;
851  float tsdf = 1.0;
852  float sdf_trunc = voxel_size * trunc_voxel_multiplier;
853  float w = 0.0;
854 
855  // Camera origin
856  c2w_transform_indexer.RigidTransform(0, 0, 0, &x_o, &y_o, &z_o);
857 
858  // Direction
859  c2w_transform_indexer.Unproject(static_cast<float>(x),
860  static_cast<float>(y), 1.0f, &x_c, &y_c,
861  &z_c);
862  c2w_transform_indexer.RigidTransform(x_c, y_c, z_c, &x_g, &y_g, &z_g);
863  float x_d = (x_g - x_o);
864  float y_d = (y_g - y_o);
865  float z_d = (z_g - z_o);
866 
867  MiniVecCache cache{0, 0, 0, -1};
868  bool surface_found = false;
869  while (t < t_max) {
870  index_t linear_idx =
871  GetLinearIdxAtT(x_o, y_o, z_o, x_d, y_d, z_d, t, cache);
872 
873  if (linear_idx < 0) {
874  t_prev = t;
875  t += block_size;
876  } else {
877  tsdf_prev = tsdf;
878  tsdf = tsdf_base_ptr[linear_idx];
879  w = weight_base_ptr[linear_idx];
880  if (tsdf_prev > 0 && w >= weight_threshold && tsdf <= 0) {
881  surface_found = true;
882  break;
883  }
884  t_prev = t;
885  float delta = tsdf * sdf_trunc;
886  t += delta < voxel_size ? voxel_size : delta;
887  }
888  }
889 
890  if (surface_found) {
891  float t_intersect =
892  (t * tsdf_prev - t_prev * tsdf) / (tsdf_prev - tsdf);
893  x_g = x_o + t_intersect * x_d;
894  y_g = y_o + t_intersect * y_d;
895  z_g = z_o + t_intersect * z_d;
896 
897  // Trivial vertex assignment
898  if (depth_ptr) {
899  *depth_ptr = t_intersect * depth_scale;
900  }
901  if (vertex_ptr) {
902  w2c_transform_indexer.RigidTransform(
903  x_g, y_g, z_g, vertex_ptr + 0, vertex_ptr + 1,
904  vertex_ptr + 2);
905  }
906  if (!visit_neighbors) return;
907 
908  // Trilinear interpolation
909  // TODO(wei): simplify the flow by splitting the
910  // functions given what is enabled
911  index_t x_b = static_cast<index_t>(floorf(x_g / block_size));
912  index_t y_b = static_cast<index_t>(floorf(y_g / block_size));
913  index_t z_b = static_cast<index_t>(floorf(z_g / block_size));
914  float x_v = (x_g - float(x_b) * block_size) / voxel_size;
915  float y_v = (y_g - float(y_b) * block_size) / voxel_size;
916  float z_v = (z_g - float(z_b) * block_size) / voxel_size;
917 
918  Key key(x_b, y_b, z_b);
919 
920  index_t block_buf_idx = cache.Check(x_b, y_b, z_b);
921  if (block_buf_idx < 0) {
922  auto iter = hashmap_impl.find(key);
923  if (iter == hashmap_impl.end()) return;
924  block_buf_idx = iter->second;
925  cache.Update(x_b, y_b, z_b, block_buf_idx);
926  }
927 
928  index_t x_v_floor = static_cast<index_t>(floorf(x_v));
929  index_t y_v_floor = static_cast<index_t>(floorf(y_v));
930  index_t z_v_floor = static_cast<index_t>(floorf(z_v));
931 
932  float ratio_x = x_v - float(x_v_floor);
933  float ratio_y = y_v - float(y_v_floor);
934  float ratio_z = z_v - float(z_v_floor);
935 
936  float sum_r = 0.0;
937  for (index_t k = 0; k < 8; ++k) {
938  index_t dx_v = (k & 1) > 0 ? 1 : 0;
939  index_t dy_v = (k & 2) > 0 ? 1 : 0;
940  index_t dz_v = (k & 4) > 0 ? 1 : 0;
941 
942  index_t linear_idx_k = GetLinearIdxAtP(
943  x_b, y_b, z_b, x_v_floor + dx_v, y_v_floor + dy_v,
944  z_v_floor + dz_v, block_buf_idx, cache);
945 
946  if (linear_idx_k >= 0 && weight_base_ptr[linear_idx_k] > 0) {
947  float rx = dx_v * (ratio_x) + (1 - dx_v) * (1 - ratio_x);
948  float ry = dy_v * (ratio_y) + (1 - dy_v) * (1 - ratio_y);
949  float rz = dz_v * (ratio_z) + (1 - dz_v) * (1 - ratio_z);
950  float r = rx * ry * rz;
951 
952  if (interp_ratio_ptr) {
953  interp_ratio_ptr[k] = r;
954  }
955  if (mask_ptr) {
956  mask_ptr[k] = true;
957  }
958  if (index_ptr) {
959  index_ptr[k] = linear_idx_k;
960  }
961 
962  float tsdf_k = tsdf_base_ptr[linear_idx_k];
963  float interp_ratio_dx = ry * rz * (2 * dx_v - 1);
964  float interp_ratio_dy = rx * rz * (2 * dy_v - 1);
965  float interp_ratio_dz = rx * ry * (2 * dz_v - 1);
966 
967  if (interp_ratio_dx_ptr) {
968  interp_ratio_dx_ptr[k] = interp_ratio_dx;
969  }
970  if (interp_ratio_dy_ptr) {
971  interp_ratio_dy_ptr[k] = interp_ratio_dy;
972  }
973  if (interp_ratio_dz_ptr) {
974  interp_ratio_dz_ptr[k] = interp_ratio_dz;
975  }
976 
977  if (normal_ptr) {
978  normal_ptr[0] += interp_ratio_dx * tsdf_k;
979  normal_ptr[1] += interp_ratio_dy * tsdf_k;
980  normal_ptr[2] += interp_ratio_dz * tsdf_k;
981  }
982 
983  if (color_ptr) {
984  index_t color_linear_idx = linear_idx_k * 3;
985  color_ptr[0] +=
986  r * color_base_ptr[color_linear_idx + 0];
987  color_ptr[1] +=
988  r * color_base_ptr[color_linear_idx + 1];
989  color_ptr[2] +=
990  r * color_base_ptr[color_linear_idx + 2];
991  }
992 
993  sum_r += r;
994  }
995  } // loop over 8 neighbors
996 
997  if (sum_r > 0) {
998  sum_r *= 255.0;
999  if (color_ptr) {
1000  color_ptr[0] /= sum_r;
1001  color_ptr[1] /= sum_r;
1002  color_ptr[2] /= sum_r;
1003  }
1004 
1005  if (normal_ptr) {
1006  constexpr float EPSILON = 1e-5f;
1007  float norm = sqrt(normal_ptr[0] * normal_ptr[0] +
1008  normal_ptr[1] * normal_ptr[1] +
1009  normal_ptr[2] * normal_ptr[2]);
1010  norm = std::max(norm, EPSILON);
1011  w2c_transform_indexer.Rotate(
1012  -normal_ptr[0] / norm, -normal_ptr[1] / norm,
1013  -normal_ptr[2] / norm, normal_ptr + 0,
1014  normal_ptr + 1, normal_ptr + 2);
1015  }
1016  }
1017  } // surface-found
1018  });
1019 
1020 #if defined(__CUDACC__)
1022 #endif
1023 }
1024 
1025 template <typename tsdf_t, typename weight_t, typename color_t>
1026 #if defined(__CUDACC__)
1027 void ExtractPointCloudCUDA
1028 #else
1030 #endif
1031  (const core::Tensor& indices,
1032  const core::Tensor& nb_indices,
1033  const core::Tensor& nb_masks,
1034  const core::Tensor& block_keys,
1035  const TensorMap& block_value_map,
1037  core::Tensor& normals,
1038  core::Tensor& colors,
1039  index_t resolution,
1040  float voxel_size,
1041  float weight_threshold,
1042  int& valid_size) {
1043  core::Device device = block_keys.GetDevice();
1044 
1045  // Parameters
1046  index_t resolution2 = resolution * resolution;
1047  index_t resolution3 = resolution2 * resolution;
1048 
1049  // Shape / transform indexers, no data involved
1050  ArrayIndexer voxel_indexer({resolution, resolution, resolution});
1051 
1052  // Real data indexer
1053  ArrayIndexer block_keys_indexer(block_keys, 1);
1054  ArrayIndexer nb_block_masks_indexer(nb_masks, 2);
1055  ArrayIndexer nb_block_indices_indexer(nb_indices, 2);
1056 
1057  // Plain arrays that does not require indexers
1058  const index_t* indices_ptr = indices.GetDataPtr<index_t>();
1059 
1060  if (!block_value_map.Contains("tsdf") ||
1061  !block_value_map.Contains("weight")) {
1063  "TSDF and/or weight not allocated in blocks, please implement "
1064  "customized integration.");
1065  }
1066  const tsdf_t* tsdf_base_ptr =
1067  block_value_map.at("tsdf").GetDataPtr<tsdf_t>();
1068  const weight_t* weight_base_ptr =
1069  block_value_map.at("weight").GetDataPtr<weight_t>();
1070  const color_t* color_base_ptr = nullptr;
1071  if (block_value_map.Contains("color")) {
1072  color_base_ptr = block_value_map.at("color").GetDataPtr<color_t>();
1073  }
1074 
1075  index_t n_blocks = indices.GetLength();
1076  index_t n = n_blocks * resolution3;
1077 
1078  // Output
1079 #if defined(__CUDACC__)
1080  core::Tensor count(std::vector<index_t>{0}, {1}, core::Int32,
1081  block_keys.GetDevice());
1082  index_t* count_ptr = count.GetDataPtr<index_t>();
1083 #else
1084  std::atomic<index_t> count_atomic(0);
1085  std::atomic<index_t>* count_ptr = &count_atomic;
1086 #endif
1087 
1088  if (valid_size < 0) {
1090  "No estimated max point cloud size provided, using a 2-pass "
1091  "estimation. Surface extraction could be slow.");
1092  // This pass determines valid number of points.
1093 
1094  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t workload_idx) {
1095  auto GetLinearIdx = [&] OPEN3D_DEVICE(
1096  index_t xo, index_t yo, index_t zo,
1097  index_t curr_block_idx) -> index_t {
1098  return DeviceGetLinearIdx(xo, yo, zo, curr_block_idx,
1099  resolution, nb_block_masks_indexer,
1100  nb_block_indices_indexer);
1101  };
1102 
1103  // Natural index (0, N) -> (block_idx,
1104  // voxel_idx)
1105  index_t workload_block_idx = workload_idx / resolution3;
1106  index_t block_idx = indices_ptr[workload_block_idx];
1107  index_t voxel_idx = workload_idx % resolution3;
1108 
1109  // voxel_idx -> (x_voxel, y_voxel, z_voxel)
1110  index_t xv, yv, zv;
1111  voxel_indexer.WorkloadToCoord(voxel_idx, &xv, &yv, &zv);
1112 
1113  index_t linear_idx = block_idx * resolution3 + voxel_idx;
1114  float tsdf_o = tsdf_base_ptr[linear_idx];
1115  float weight_o = weight_base_ptr[linear_idx];
1116  if (weight_o <= weight_threshold) return;
1117 
1118  // Enumerate x-y-z directions
1119  for (index_t i = 0; i < 3; ++i) {
1120  index_t linear_idx_i =
1121  GetLinearIdx(xv + (i == 0), yv + (i == 1),
1122  zv + (i == 2), workload_block_idx);
1123  if (linear_idx_i < 0) continue;
1124 
1125  float tsdf_i = tsdf_base_ptr[linear_idx_i];
1126  float weight_i = weight_base_ptr[linear_idx_i];
1127  if (weight_i > weight_threshold && tsdf_i * tsdf_o < 0) {
1128  OPEN3D_ATOMIC_ADD(count_ptr, 1);
1129  }
1130  }
1131  });
1132 
1133 #if defined(__CUDACC__)
1134  valid_size = count[0].Item<index_t>();
1135  count[0] = 0;
1136 #else
1137  valid_size = (*count_ptr).load();
1138  (*count_ptr) = 0;
1139 #endif
1140  }
1141 
1142  if (points.GetLength() == 0) {
1143  points = core::Tensor({valid_size, 3}, core::Float32, device);
1144  }
1145  ArrayIndexer point_indexer(points, 1);
1146 
1147  // Normals
1148  ArrayIndexer normal_indexer;
1149  normals = core::Tensor({valid_size, 3}, core::Float32, device);
1150  normal_indexer = ArrayIndexer(normals, 1);
1151 
1152  // This pass extracts exact surface points.
1153 
1154  // Colors
1155  ArrayIndexer color_indexer;
1156  if (color_base_ptr) {
1157  colors = core::Tensor({valid_size, 3}, core::Float32, device);
1158  color_indexer = ArrayIndexer(colors, 1);
1159  }
1160 
1161  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t workload_idx) {
1162  auto GetLinearIdx = [&] OPEN3D_DEVICE(
1163  index_t xo, index_t yo, index_t zo,
1164  index_t curr_block_idx) -> index_t {
1165  return DeviceGetLinearIdx(xo, yo, zo, curr_block_idx, resolution,
1166  nb_block_masks_indexer,
1167  nb_block_indices_indexer);
1168  };
1169 
1170  auto GetNormal = [&] OPEN3D_DEVICE(index_t xo, index_t yo, index_t zo,
1171  index_t curr_block_idx, float* n) {
1172  return DeviceGetNormal<tsdf_t>(
1173  tsdf_base_ptr, xo, yo, zo, curr_block_idx, n, resolution,
1174  nb_block_masks_indexer, nb_block_indices_indexer);
1175  };
1176 
1177  // Natural index (0, N) -> (block_idx, voxel_idx)
1178  index_t workload_block_idx = workload_idx / resolution3;
1179  index_t block_idx = indices_ptr[workload_block_idx];
1180  index_t voxel_idx = workload_idx % resolution3;
1181 
1183  // block_idx -> (x_block, y_block, z_block)
1184  index_t* block_key_ptr =
1185  block_keys_indexer.GetDataPtr<index_t>(block_idx);
1186  index_t xb = block_key_ptr[0];
1187  index_t yb = block_key_ptr[1];
1188  index_t zb = block_key_ptr[2];
1189 
1190  // voxel_idx -> (x_voxel, y_voxel, z_voxel)
1191  index_t xv, yv, zv;
1192  voxel_indexer.WorkloadToCoord(voxel_idx, &xv, &yv, &zv);
1193 
1194  index_t linear_idx = block_idx * resolution3 + voxel_idx;
1195  float tsdf_o = tsdf_base_ptr[linear_idx];
1196  float weight_o = weight_base_ptr[linear_idx];
1197  if (weight_o <= weight_threshold) return;
1198 
1199  float no[3] = {0}, ne[3] = {0};
1200 
1201  // Get normal at origin
1202  GetNormal(xv, yv, zv, workload_block_idx, no);
1203 
1204  index_t x = xb * resolution + xv;
1205  index_t y = yb * resolution + yv;
1206  index_t z = zb * resolution + zv;
1207 
1208  // Enumerate x-y-z axis
1209  for (index_t i = 0; i < 3; ++i) {
1210  index_t linear_idx_i =
1211  GetLinearIdx(xv + (i == 0), yv + (i == 1), zv + (i == 2),
1212  workload_block_idx);
1213  if (linear_idx_i < 0) continue;
1214 
1215  float tsdf_i = tsdf_base_ptr[linear_idx_i];
1216  float weight_i = weight_base_ptr[linear_idx_i];
1217  if (weight_i > weight_threshold && tsdf_i * tsdf_o < 0) {
1218  float ratio = (0 - tsdf_o) / (tsdf_i - tsdf_o);
1219 
1220  index_t idx = OPEN3D_ATOMIC_ADD(count_ptr, 1);
1221  if (idx >= valid_size) {
1222  printf("Point cloud size larger than "
1223  "estimated, please increase the "
1224  "estimation!\n");
1225  return;
1226  }
1227 
1228  float* point_ptr = point_indexer.GetDataPtr<float>(idx);
1229  point_ptr[0] = voxel_size * (x + ratio * int(i == 0));
1230  point_ptr[1] = voxel_size * (y + ratio * int(i == 1));
1231  point_ptr[2] = voxel_size * (z + ratio * int(i == 2));
1232 
1233  // Get normal at edge and interpolate
1234  float* normal_ptr = normal_indexer.GetDataPtr<float>(idx);
1235  GetNormal(xv + (i == 0), yv + (i == 1), zv + (i == 2),
1236  workload_block_idx, ne);
1237  float nx = (1 - ratio) * no[0] + ratio * ne[0];
1238  float ny = (1 - ratio) * no[1] + ratio * ne[1];
1239  float nz = (1 - ratio) * no[2] + ratio * ne[2];
1240  float norm = static_cast<float>(
1241  sqrt(nx * nx + ny * ny + nz * nz) + 1e-5);
1242  normal_ptr[0] = nx / norm;
1243  normal_ptr[1] = ny / norm;
1244  normal_ptr[2] = nz / norm;
1245 
1246  if (color_base_ptr) {
1247  float* color_ptr = color_indexer.GetDataPtr<float>(idx);
1248  const color_t* color_o_ptr =
1249  color_base_ptr + 3 * linear_idx;
1250  float r_o = color_o_ptr[0];
1251  float g_o = color_o_ptr[1];
1252  float b_o = color_o_ptr[2];
1253 
1254  const color_t* color_i_ptr =
1255  color_base_ptr + 3 * linear_idx_i;
1256  float r_i = color_i_ptr[0];
1257  float g_i = color_i_ptr[1];
1258  float b_i = color_i_ptr[2];
1259 
1260  color_ptr[0] = ((1 - ratio) * r_o + ratio * r_i) / 255.0f;
1261  color_ptr[1] = ((1 - ratio) * g_o + ratio * g_i) / 255.0f;
1262  color_ptr[2] = ((1 - ratio) * b_o + ratio * b_i) / 255.0f;
1263  }
1264  }
1265  }
1266  });
1267 
1268 #if defined(__CUDACC__)
1269  index_t total_count = count.Item<index_t>();
1270 #else
1271  index_t total_count = (*count_ptr).load();
1272 #endif
1273 
1274  utility::LogDebug("{} vertices extracted", total_count);
1275  valid_size = total_count;
1276 
1277 #if defined(BUILD_CUDA_MODULE) && defined(__CUDACC__)
1279 #endif
1280 }
1281 
1282 template <typename tsdf_t, typename weight_t, typename color_t>
1283 #if defined(__CUDACC__)
1284 void ExtractTriangleMeshCUDA
1285 #else
1287 #endif
1288  (const core::Tensor& block_indices,
1289  const core::Tensor& inv_block_indices,
1290  const core::Tensor& nb_block_indices,
1291  const core::Tensor& nb_block_masks,
1292  const core::Tensor& block_keys,
1293  const TensorMap& block_value_map,
1294  core::Tensor& vertices,
1295  core::Tensor& triangles,
1296  core::Tensor& vertex_normals,
1297  core::Tensor& vertex_colors,
1298  index_t block_resolution,
1299  float voxel_size,
1300  float weight_threshold,
1301  index_t& vertex_count) {
1302  core::Device device = block_indices.GetDevice();
1303 
1304  index_t resolution = block_resolution;
1305  index_t resolution3 = resolution * resolution * resolution;
1306 
1307  // Shape / transform indexers, no data involved
1308  ArrayIndexer voxel_indexer({resolution, resolution, resolution});
1309  index_t n_blocks = static_cast<index_t>(block_indices.GetLength());
1310 
1311  // TODO(wei): profile performance by replacing the table to a hashmap.
1312  // Voxel-wise mesh info. 4 channels correspond to:
1313  // 3 edges' corresponding vertex index + 1 table index.
1314  core::Tensor mesh_structure;
1315  try {
1316  mesh_structure = core::Tensor::Zeros(
1317  {n_blocks, resolution, resolution, resolution, 4}, core::Int32,
1318  device);
1319  } catch (const std::runtime_error&) {
1321  "[MeshExtractionKernel] Unable to allocate assistance mesh "
1322  "structure for Marching "
1323  "Cubes with {} active voxel blocks. Please consider using a "
1324  "larger voxel size (currently {}) for TSDF "
1325  "integration, or using tsdf_volume.cpu() to perform mesh "
1326  "extraction on CPU.",
1327  n_blocks, voxel_size);
1328  }
1329 
1330  // Real data indexer
1331  ArrayIndexer mesh_structure_indexer(mesh_structure, 4);
1332  ArrayIndexer nb_block_masks_indexer(nb_block_masks, 2);
1333  ArrayIndexer nb_block_indices_indexer(nb_block_indices, 2);
1334 
1335  // Plain arrays that does not require indexers
1336  const index_t* indices_ptr = block_indices.GetDataPtr<index_t>();
1337  const index_t* inv_indices_ptr = inv_block_indices.GetDataPtr<index_t>();
1338 
1339  if (!block_value_map.Contains("tsdf") ||
1340  !block_value_map.Contains("weight")) {
1342  "TSDF and/or weight not allocated in blocks, please implement "
1343  "customized integration.");
1344  }
1345  const tsdf_t* tsdf_base_ptr =
1346  block_value_map.at("tsdf").GetDataPtr<tsdf_t>();
1347  const weight_t* weight_base_ptr =
1348  block_value_map.at("weight").GetDataPtr<weight_t>();
1349  const color_t* color_base_ptr = nullptr;
1350  if (block_value_map.Contains("color")) {
1351  color_base_ptr = block_value_map.at("color").GetDataPtr<color_t>();
1352  }
1353 
1354  index_t n = n_blocks * resolution3;
1355  // Pass 0: analyze mesh structure, set up one-on-one correspondences
1356  // from edges to vertices.
1357 
1358  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t widx) {
1359  auto GetLinearIdx = [&] OPEN3D_DEVICE(
1360  index_t xo, index_t yo, index_t zo,
1361  index_t curr_block_idx) -> index_t {
1362  return DeviceGetLinearIdx(xo, yo, zo, curr_block_idx,
1363  static_cast<index_t>(resolution),
1364  nb_block_masks_indexer,
1365  nb_block_indices_indexer);
1366  };
1367 
1368  // Natural index (0, N) -> (block_idx, voxel_idx)
1369  index_t workload_block_idx = widx / resolution3;
1370  index_t voxel_idx = widx % resolution3;
1371 
1372  // voxel_idx -> (x_voxel, y_voxel, z_voxel)
1373  index_t xv, yv, zv;
1374  voxel_indexer.WorkloadToCoord(voxel_idx, &xv, &yv, &zv);
1375 
1376  // Check per-vertex sign in the cube to determine cube
1377  // type
1378  index_t table_idx = 0;
1379  for (index_t i = 0; i < 8; ++i) {
1380  index_t linear_idx_i =
1381  GetLinearIdx(xv + vtx_shifts[i][0], yv + vtx_shifts[i][1],
1382  zv + vtx_shifts[i][2], workload_block_idx);
1383  if (linear_idx_i < 0) return;
1384 
1385  float tsdf_i = tsdf_base_ptr[linear_idx_i];
1386  float weight_i = weight_base_ptr[linear_idx_i];
1387  if (weight_i <= weight_threshold) return;
1388 
1389  table_idx |= ((tsdf_i < 0) ? (1 << i) : 0);
1390  }
1391 
1392  index_t* mesh_struct_ptr = mesh_structure_indexer.GetDataPtr<index_t>(
1393  xv, yv, zv, workload_block_idx);
1394  mesh_struct_ptr[3] = table_idx;
1395 
1396  if (table_idx == 0 || table_idx == 255) return;
1397 
1398  // Check per-edge sign determine the cube type
1399  index_t edges_with_vertices = edge_table[table_idx];
1400  for (index_t i = 0; i < 12; ++i) {
1401  if (edges_with_vertices & (1 << i)) {
1402  index_t xv_i = xv + edge_shifts[i][0];
1403  index_t yv_i = yv + edge_shifts[i][1];
1404  index_t zv_i = zv + edge_shifts[i][2];
1405  index_t edge_i = edge_shifts[i][3];
1406 
1407  index_t dxb = xv_i / resolution;
1408  index_t dyb = yv_i / resolution;
1409  index_t dzb = zv_i / resolution;
1410 
1411  index_t nb_idx = (dxb + 1) + (dyb + 1) * 3 + (dzb + 1) * 9;
1412 
1413  index_t block_idx_i =
1414  *nb_block_indices_indexer.GetDataPtr<index_t>(
1415  workload_block_idx, nb_idx);
1416  index_t* mesh_ptr_i =
1417  mesh_structure_indexer.GetDataPtr<index_t>(
1418  xv_i - dxb * resolution,
1419  yv_i - dyb * resolution,
1420  zv_i - dzb * resolution,
1421  inv_indices_ptr[block_idx_i]);
1422 
1423  // Non-atomic write, but we are safe
1424  mesh_ptr_i[edge_i] = -1;
1425  }
1426  }
1427  });
1428 
1429  // Pass 1: determine valid number of vertices (if not preset)
1430 #if defined(__CUDACC__)
1431  core::Tensor count(std::vector<index_t>{0}, {}, core::Int32, device);
1432 
1433  index_t* count_ptr = count.GetDataPtr<index_t>();
1434 #else
1435  std::atomic<index_t> count_atomic(0);
1436  std::atomic<index_t>* count_ptr = &count_atomic;
1437 #endif
1438 
1439  if (vertex_count < 0) {
1440  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t widx) {
1441  // Natural index (0, N) -> (block_idx, voxel_idx)
1442  index_t workload_block_idx = widx / resolution3;
1443  index_t voxel_idx = widx % resolution3;
1444 
1445  // voxel_idx -> (x_voxel, y_voxel, z_voxel)
1446  index_t xv, yv, zv;
1447  voxel_indexer.WorkloadToCoord(voxel_idx, &xv, &yv, &zv);
1448 
1449  // Obtain voxel's mesh struct ptr
1450  index_t* mesh_struct_ptr =
1451  mesh_structure_indexer.GetDataPtr<index_t>(
1452  xv, yv, zv, workload_block_idx);
1453 
1454  // Early quit -- no allocated vertex to compute
1455  if (mesh_struct_ptr[0] != -1 && mesh_struct_ptr[1] != -1 &&
1456  mesh_struct_ptr[2] != -1) {
1457  return;
1458  }
1459 
1460  // Enumerate 3 edges in the voxel
1461  for (index_t e = 0; e < 3; ++e) {
1462  index_t vertex_idx = mesh_struct_ptr[e];
1463  if (vertex_idx != -1) continue;
1464 
1465  OPEN3D_ATOMIC_ADD(count_ptr, 1);
1466  }
1467  });
1468 
1469 #if defined(__CUDACC__)
1470  vertex_count = count.Item<index_t>();
1471 #else
1472  vertex_count = (*count_ptr).load();
1473 #endif
1474  }
1475 
1476  utility::LogDebug("Total vertex count = {}", vertex_count);
1477  vertices = core::Tensor({vertex_count, 3}, core::Float32, device);
1478 
1479  vertex_normals = core::Tensor({vertex_count, 3}, core::Float32, device);
1480  ArrayIndexer normal_indexer = ArrayIndexer(vertex_normals, 1);
1481 
1482  ArrayIndexer color_indexer;
1483  if (color_base_ptr) {
1484  vertex_colors = core::Tensor({vertex_count, 3}, core::Float32, device);
1485  color_indexer = ArrayIndexer(vertex_colors, 1);
1486  }
1487 
1488  ArrayIndexer block_keys_indexer(block_keys, 1);
1489  ArrayIndexer vertex_indexer(vertices, 1);
1490 
1491 #if defined(__CUDACC__)
1492  count = core::Tensor(std::vector<index_t>{0}, {}, core::Int32, device);
1493  count_ptr = count.GetDataPtr<index_t>();
1494 #else
1495  (*count_ptr) = 0;
1496 #endif
1497 
1498  // Pass 2: extract vertices.
1499 
1500  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t widx) {
1501  auto GetLinearIdx = [&] OPEN3D_DEVICE(
1502  index_t xo, index_t yo, index_t zo,
1503  index_t curr_block_idx) -> index_t {
1504  return DeviceGetLinearIdx(xo, yo, zo, curr_block_idx, resolution,
1505  nb_block_masks_indexer,
1506  nb_block_indices_indexer);
1507  };
1508 
1509  auto GetNormal = [&] OPEN3D_DEVICE(index_t xo, index_t yo, index_t zo,
1510  index_t curr_block_idx, float* n) {
1511  return DeviceGetNormal<tsdf_t>(
1512  tsdf_base_ptr, xo, yo, zo, curr_block_idx, n, resolution,
1513  nb_block_masks_indexer, nb_block_indices_indexer);
1514  };
1515 
1516  // Natural index (0, N) -> (block_idx, voxel_idx)
1517  index_t workload_block_idx = widx / resolution3;
1518  index_t block_idx = indices_ptr[workload_block_idx];
1519  index_t voxel_idx = widx % resolution3;
1520 
1521  // block_idx -> (x_block, y_block, z_block)
1522  index_t* block_key_ptr =
1523  block_keys_indexer.GetDataPtr<index_t>(block_idx);
1524  index_t xb = block_key_ptr[0];
1525  index_t yb = block_key_ptr[1];
1526  index_t zb = block_key_ptr[2];
1527 
1528  // voxel_idx -> (x_voxel, y_voxel, z_voxel)
1529  index_t xv, yv, zv;
1530  voxel_indexer.WorkloadToCoord(voxel_idx, &xv, &yv, &zv);
1531 
1532  // global coordinate (in voxels)
1533  index_t x = xb * resolution + xv;
1534  index_t y = yb * resolution + yv;
1535  index_t z = zb * resolution + zv;
1536 
1537  // Obtain voxel's mesh struct ptr
1538  index_t* mesh_struct_ptr = mesh_structure_indexer.GetDataPtr<index_t>(
1539  xv, yv, zv, workload_block_idx);
1540 
1541  // Early quit -- no allocated vertex to compute
1542  if (mesh_struct_ptr[0] != -1 && mesh_struct_ptr[1] != -1 &&
1543  mesh_struct_ptr[2] != -1) {
1544  return;
1545  }
1546 
1547  // Obtain voxel ptr
1548  index_t linear_idx = resolution3 * block_idx + voxel_idx;
1549  float tsdf_o = tsdf_base_ptr[linear_idx];
1550 
1551  float no[3] = {0}, ne[3] = {0};
1552 
1553  // Get normal at origin
1554  GetNormal(xv, yv, zv, workload_block_idx, no);
1555 
1556  // Enumerate 3 edges in the voxel
1557  for (index_t e = 0; e < 3; ++e) {
1558  index_t vertex_idx = mesh_struct_ptr[e];
1559  if (vertex_idx != -1) continue;
1560 
1561  index_t linear_idx_e =
1562  GetLinearIdx(xv + (e == 0), yv + (e == 1), zv + (e == 2),
1563  workload_block_idx);
1564  OPEN3D_ASSERT(linear_idx_e > 0 &&
1565  "Internal error: GetVoxelAt returns nullptr.");
1566  float tsdf_e = tsdf_base_ptr[linear_idx_e];
1567  float ratio = (0 - tsdf_o) / (tsdf_e - tsdf_o);
1568 
1569  index_t idx = OPEN3D_ATOMIC_ADD(count_ptr, 1);
1570  mesh_struct_ptr[e] = idx;
1571 
1572  float ratio_x = ratio * index_t(e == 0);
1573  float ratio_y = ratio * index_t(e == 1);
1574  float ratio_z = ratio * index_t(e == 2);
1575 
1576  float* vertex_ptr = vertex_indexer.GetDataPtr<float>(idx);
1577  vertex_ptr[0] = voxel_size * (x + ratio_x);
1578  vertex_ptr[1] = voxel_size * (y + ratio_y);
1579  vertex_ptr[2] = voxel_size * (z + ratio_z);
1580 
1581  // Get normal at edge and interpolate
1582  float* normal_ptr = normal_indexer.GetDataPtr<float>(idx);
1583  GetNormal(xv + (e == 0), yv + (e == 1), zv + (e == 2),
1584  workload_block_idx, ne);
1585  float nx = (1 - ratio) * no[0] + ratio * ne[0];
1586  float ny = (1 - ratio) * no[1] + ratio * ne[1];
1587  float nz = (1 - ratio) * no[2] + ratio * ne[2];
1588  float norm = static_cast<float>(sqrt(nx * nx + ny * ny + nz * nz) +
1589  1e-5);
1590  normal_ptr[0] = nx / norm;
1591  normal_ptr[1] = ny / norm;
1592  normal_ptr[2] = nz / norm;
1593 
1594  if (color_base_ptr) {
1595  float* color_ptr = color_indexer.GetDataPtr<float>(idx);
1596  float r_o = color_base_ptr[linear_idx * 3 + 0];
1597  float g_o = color_base_ptr[linear_idx * 3 + 1];
1598  float b_o = color_base_ptr[linear_idx * 3 + 2];
1599 
1600  float r_e = color_base_ptr[linear_idx_e * 3 + 0];
1601  float g_e = color_base_ptr[linear_idx_e * 3 + 1];
1602  float b_e = color_base_ptr[linear_idx_e * 3 + 2];
1603 
1604  color_ptr[0] = ((1 - ratio) * r_o + ratio * r_e) / 255.0f;
1605  color_ptr[1] = ((1 - ratio) * g_o + ratio * g_e) / 255.0f;
1606  color_ptr[2] = ((1 - ratio) * b_o + ratio * b_e) / 255.0f;
1607  }
1608  }
1609  });
1610 
1611  // Pass 3: connect vertices and form triangles.
1612  index_t triangle_count = vertex_count * 3;
1613  triangles = core::Tensor({triangle_count, 3}, core::Int32, device);
1614  ArrayIndexer triangle_indexer(triangles, 1);
1615 
1616 #if defined(__CUDACC__)
1617  count = core::Tensor(std::vector<index_t>{0}, {}, core::Int32, device);
1618  count_ptr = count.GetDataPtr<index_t>();
1619 #else
1620  (*count_ptr) = 0;
1621 #endif
1622  core::ParallelFor(device, n, [=] OPEN3D_DEVICE(index_t widx) {
1623  // Natural index (0, N) -> (block_idx, voxel_idx)
1624  index_t workload_block_idx = widx / resolution3;
1625  index_t voxel_idx = widx % resolution3;
1626 
1627  // voxel_idx -> (x_voxel, y_voxel, z_voxel)
1628  index_t xv, yv, zv;
1629  voxel_indexer.WorkloadToCoord(voxel_idx, &xv, &yv, &zv);
1630 
1631  // Obtain voxel's mesh struct ptr
1632  index_t* mesh_struct_ptr = mesh_structure_indexer.GetDataPtr<index_t>(
1633  xv, yv, zv, workload_block_idx);
1634 
1635  index_t table_idx = mesh_struct_ptr[3];
1636  if (tri_count[table_idx] == 0) return;
1637 
1638  for (index_t tri = 0; tri < 16; tri += 3) {
1639  if (tri_table[table_idx][tri] == -1) return;
1640 
1641  index_t tri_idx = OPEN3D_ATOMIC_ADD(count_ptr, 1);
1642 
1643  for (index_t vertex = 0; vertex < 3; ++vertex) {
1644  index_t edge = tri_table[table_idx][tri + vertex];
1645 
1646  index_t xv_i = xv + edge_shifts[edge][0];
1647  index_t yv_i = yv + edge_shifts[edge][1];
1648  index_t zv_i = zv + edge_shifts[edge][2];
1649  index_t edge_i = edge_shifts[edge][3];
1650 
1651  index_t dxb = xv_i / resolution;
1652  index_t dyb = yv_i / resolution;
1653  index_t dzb = zv_i / resolution;
1654 
1655  index_t nb_idx = (dxb + 1) + (dyb + 1) * 3 + (dzb + 1) * 9;
1656 
1657  index_t block_idx_i =
1658  *nb_block_indices_indexer.GetDataPtr<index_t>(
1659  workload_block_idx, nb_idx);
1660  index_t* mesh_struct_ptr_i =
1661  mesh_structure_indexer.GetDataPtr<index_t>(
1662  xv_i - dxb * resolution,
1663  yv_i - dyb * resolution,
1664  zv_i - dzb * resolution,
1665  inv_indices_ptr[block_idx_i]);
1666 
1667  index_t* triangle_ptr =
1668  triangle_indexer.GetDataPtr<index_t>(tri_idx);
1669  triangle_ptr[2 - vertex] = mesh_struct_ptr_i[edge_i];
1670  }
1671  }
1672  });
1673 
1674 #if defined(__CUDACC__)
1675  triangle_count = count.Item<index_t>();
1676 #else
1677  triangle_count = (*count_ptr).load();
1678 #endif
1679  utility::LogDebug("Total triangle count = {}", triangle_count);
1680  triangles = triangles.Slice(0, 0, triangle_count);
1681 }
1682 
1683 } // namespace voxel_grid
1684 } // namespace kernel
1685 } // namespace geometry
1686 } // namespace t
1687 } // namespace open3d
OPEN3D_HOST_DEVICE void Rotate(float x_in, float y_in, float z_in, float *x_out, float *y_out, float *z_out) const
Transform a 3D coordinate in camera coordinate to world coordinate.
Definition: GeometryIndexer.h:100
Definition: StdGPUHashBackend.h:134
Definition: GeometryIndexer.h:180
void RayCastCPU(std::shared_ptr< core::HashMap > &hashmap, const TensorMap &block_value_map, const core::Tensor &range_map, TensorMap &renderings_map, const core::Tensor &intrinsic, const core::Tensor &extrinsic, index_t h, index_t w, index_t block_resolution, float voxel_size, float depth_scale, float depth_min, float depth_max, float weight_threshold, float trunc_voxel_multiplier, int range_map_down_factor)
Definition: VoxelBlockGridImpl.h:532
TArrayIndexer< index_t > ArrayIndexer
Definition: VoxelBlockGridImpl.h:50
OPEN3D_DEVICE void DeviceGetNormal(const tsdf_t *tsdf_base_ptr, index_t xo, index_t yo, index_t zo, index_t curr_block_idx, float *n, index_t resolution, const ArrayIndexer &nb_block_masks_indexer, const ArrayIndexer &nb_block_indices_indexer)
Definition: VoxelBlockGridImpl.h:131
OPEN3D_HOST_DEVICE void Project(float x_in, float y_in, float z_in, float *u_out, float *v_out) const
Project a 3D coordinate in camera coordinate to a 2D uv coordinate.
Definition: GeometryIndexer.h:119
OPEN3D_HOST_DEVICE void * GetDataPtr() const
Definition: GeometryIndexer.h:335
OPEN3D_HOST_DEVICE int Sign(int x)
Definition: GeometryMacros.h:96
void ExtractTriangleMeshCPU(const core::Tensor &block_indices, const core::Tensor &inv_block_indices, const core::Tensor &nb_block_indices, const core::Tensor &nb_block_masks, const core::Tensor &block_keys, const TensorMap &block_value_map, core::Tensor &vertices, core::Tensor &triangles, core::Tensor &vertex_normals, core::Tensor &vertex_colors, index_t block_resolution, float voxel_size, float weight_threshold, index_t &vertex_count)
Definition: VoxelBlockGridImpl.h:1288
Definition: Dispatch.h:129
Helper class for converting coordinates/indices between 3D/3D, 3D/2D, 2D/3D.
Definition: GeometryIndexer.h:44
void EstimateRangeCPU(const core::Tensor &block_keys, core::Tensor &range_minmax_map, const core::Tensor &intrinsics, const core::Tensor &extrinsics, int h, int w, int down_factor, int64_t block_resolution, float voxel_size, float depth_min, float depth_max)
Definition: VoxelBlockGridImpl.h:320
void OPEN3D_DEVICE Update(index_t xin, index_t yin, index_t zin, index_t block_idx_in)
Definition: VoxelBlockGridImpl.h:515
void ParallelFor(const Device &device, int64_t n, const func_t &func)
Definition: ParallelFor.h:122
const Dtype Float32
Definition: Dtype.cpp:61
int points
Definition: FilePCD.cpp:73
Device GetDevice() const
Definition: Tensor.cpp:1365
uint32_t buf_index_t
Definition: HashBackendBuffer.h:63
OPEN3D_DEVICE index_t DeviceGetLinearIdx(index_t xo, index_t yo, index_t zo, index_t curr_block_idx, index_t resolution, const ArrayIndexer &nb_block_masks_indexer, const ArrayIndexer &nb_block_indices_indexer)
Definition: VoxelBlockGridImpl.h:102
#define OPEN3D_DEVICE
Definition: CUDAUtils.h:64
int count
Definition: FilePCD.cpp:61
OPEN3D_HOST_DEVICE void Unproject(float u_in, float v_in, float d_in, float *x_out, float *y_out, float *z_out) const
Unproject a 2D uv coordinate with depth to 3D in camera coordinate.
Definition: GeometryIndexer.h:130
void ExtractPointCloudCPU(const core::Tensor &block_indices, const core::Tensor &nb_block_indices, const core::Tensor &nb_block_masks, const core::Tensor &block_keys, const TensorMap &block_value_map, core::Tensor &points, core::Tensor &normals, core::Tensor &colors, index_t block_resolution, float voxel_size, float weight_threshold, index_t &valid_size)
Definition: VoxelBlockGridImpl.h:1031
#define OPEN3D_ATOMIC_ADD(X, Y)
Definition: GeometryMacros.h:58
OPEN3D_HOST_DEVICE void RigidTransform(float x_in, float y_in, float z_in, float *x_out, float *y_out, float *z_out) const
Transform a 3D coordinate in camera coordinate to world coordinate.
Definition: GeometryIndexer.h:81
void Synchronize()
Definition: CUDAUtils.cpp:78
Definition: Dispatch.h:113
void IntegrateCPU(const core::Tensor &depth, const core::Tensor &color, const core::Tensor &block_indices, const core::Tensor &block_keys, TensorMap &block_value_map, const core::Tensor &depth_intrinsic, const core::Tensor &color_intrinsic, const core::Tensor &extrinsic, index_t resolution, float voxel_size, float sdf_trunc, float depth_scale, float depth_max)
Definition: VoxelBlockGridImpl.h:168
index_t OPEN3D_DEVICE Check(index_t xin, index_t yin, index_t zin)
Definition: VoxelBlockGridImpl.h:511
#define LogDebug(...)
Definition: Logging.h:98
math::float4 color
Definition: LineSetBuffers.cpp:64
core::Tensor InverseTransformation(const core::Tensor &T)
TODO(wei): find a proper place for such functionalities.
Definition: Utility.h:96
const Dtype Int32
Definition: Dtype.cpp:65
Definition: Device.h:39
void GetVoxelCoordinatesAndFlattenedIndicesCPU(const core::Tensor &buf_indices, const core::Tensor &block_keys, core::Tensor &voxel_coords, core::Tensor &flattened_indices, index_t block_resolution, float voxel_size)
Definition: VoxelBlockGridImpl.h:57
Definition: TBBHashBackend.h:41
int offset
Definition: FilePCD.cpp:64
int index_t
Definition: VoxelBlockGrid.h:41
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t timeout_in_ms capture_handle capture_handle capture_handle image_handle temperature_c int
Definition: K4aPlugin.cpp:489
static Tensor Zeros(const SizeVector &shape, Dtype dtype, const Device &device=Device("CPU:0"))
Create a tensor fill with zeros.
Definition: Tensor.cpp:380
Definition: VoxelBlockGridImpl.h:505
Definition: PinholeCameraIntrinsic.cpp:35
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t timeout_in_ms capture_handle capture_handle capture_handle image_handle float
Definition: K4aPlugin.cpp:475
T * GetDataPtr()
Definition: Tensor.h:1108
#define OPEN3D_ASSERT(...)
Definition: Macro.h:67
Definition: MiniVec.h:43
static Tensor Eye(int64_t n, Dtype dtype, const Device &device)
Create an identity matrix of size n x n.
Definition: Tensor.cpp:392
index_t x
Definition: VoxelBlockGridImpl.h:506
index_t z
Definition: VoxelBlockGridImpl.h:508
index_t y
Definition: VoxelBlockGridImpl.h:507
int64_t GetLength() const
Definition: Tensor.h:1089
OPEN3D_HOST_DEVICE bool InBoundary(float x, float y) const
Definition: GeometryIndexer.h:314
index_t block_idx
Definition: VoxelBlockGridImpl.h:509
static const Dtype Float64
Definition: Dtype.h:43
#define LogError(...)
Definition: Logging.h:67
Definition: TensorMap.h:49