Loading [MathJax]/extensions/TeX/AMSsymbols.js
Open3D (C++ API)  0.14.1
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
VoxelizeOpKernel.h
Go to the documentation of this file.
1 // ----------------------------------------------------------------------------
2 // - Open3D: www.open3d.org -
3 // ----------------------------------------------------------------------------
4 // The MIT License (MIT)
5 //
6 // Copyright (c) 2018-2021 www.open3d.org
7 //
8 // Permission is hereby granted, free of charge, to any person obtaining a copy
9 // of this software and associated documentation files (the "Software"), to deal
10 // in the Software without restriction, including without limitation the rights
11 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 // copies of the Software, and to permit persons to whom the Software is
13 // furnished to do so, subject to the following conditions:
14 //
15 // The above copyright notice and this permission notice shall be included in
16 // all copies or substantial portions of the Software.
17 //
18 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 // IN THE SOFTWARE.
25 // ----------------------------------------------------------------------------
26 
27 #pragma once
28 
29 //#include "open3d/ml/impl/misc/VoxelPooling.h"
31 #include "tensorflow/core/framework/op.h"
32 #include "tensorflow/core/framework/op_kernel.h"
33 #include "tensorflow/core/lib/core/errors.h"
34 
36 // namespace for code that is common for all kernels
37 namespace voxelize_opkernel {
38 
39 class OutputAllocator {
40 public:
41  OutputAllocator(tensorflow::OpKernelContext* context) : context(context) {}
42 
43  void AllocVoxelCoords(int32_t** ptr, int64_t rows, int64_t cols) {
44  using namespace tensorflow;
45  *ptr = nullptr;
46  Tensor* tensor = 0;
47  TensorShape shape({rows, cols});
48  OP_REQUIRES_OK(context, context->allocate_output(0, shape, &tensor));
49  auto flat_tensor = tensor->flat<int32_t>();
50  *ptr = flat_tensor.data();
51  }
52 
53  void AllocVoxelPointIndices(int64_t** ptr, int64_t num) {
54  using namespace tensorflow;
55  *ptr = nullptr;
56  Tensor* tensor = 0;
57  TensorShape shape({num});
58  OP_REQUIRES_OK(context, context->allocate_output(1, shape, &tensor));
59  auto flat_tensor = tensor->flat<int64>();
60  *ptr = (int64_t*)flat_tensor.data();
61  }
62 
63  void AllocVoxelPointRowSplits(int64_t** ptr, int64_t num) {
64  using namespace tensorflow;
65  *ptr = nullptr;
66  Tensor* tensor = 0;
67  TensorShape shape({num});
68  OP_REQUIRES_OK(context, context->allocate_output(2, shape, &tensor));
69  auto flat_tensor = tensor->flat<int64>();
70  *ptr = (int64_t*)flat_tensor.data();
71  }
72 
73  void AllocVoxelBatchSplits(int64_t** ptr, int64_t num) {
74  using namespace tensorflow;
75  *ptr = nullptr;
76  Tensor* tensor = 0;
77  TensorShape shape({num});
78  OP_REQUIRES_OK(context, context->allocate_output(3, shape, &tensor));
79  auto flat_tensor = tensor->flat<int64>();
80  *ptr = (int64_t*)flat_tensor.data();
81  }
82 
83 private:
84  tensorflow::OpKernelContext* context;
85 };
86 
87 // Base class with common code for the OpKernel implementations
88 class VoxelizeOpKernel : public tensorflow::OpKernel {
89 public:
90  explicit VoxelizeOpKernel(tensorflow::OpKernelConstruction* construction)
91  : OpKernel(construction) {
92  OP_REQUIRES_OK(construction,
93  construction->GetAttr("max_points_per_voxel",
94  &max_points_per_voxel));
95  OP_REQUIRES_OK(construction,
96  construction->GetAttr("max_voxels", &max_voxels));
97  }
98 
99  void Compute(tensorflow::OpKernelContext* context) override {
100  using namespace tensorflow;
101  const Tensor& points = context->input(0);
102  const Tensor& row_splits = context->input(1);
103  const Tensor& voxel_size = context->input(2);
104  const Tensor& points_range_min = context->input(3);
105  const Tensor& points_range_max = context->input(4);
106 
107  {
108  using namespace open3d::ml::op_util;
109  Dim num_points("num_points");
110  Dim ndim("ndim");
111  CHECK_SHAPE(context, points, num_points, ndim);
112  CHECK_SHAPE(context, voxel_size, ndim);
113  CHECK_SHAPE(context, points_range_min, ndim);
114  CHECK_SHAPE(context, points_range_max, ndim);
115  OP_REQUIRES(
116  context, ndim.value() > 0 && ndim.value() < 9,
117  errors::InvalidArgument(
118  "the number of dimensions must be in [1,..,8]"));
119  }
120 
121  Kernel(context, points, row_splits, voxel_size, points_range_min,
122  points_range_max);
123  }
124 
125  // Function with the device specific code
126  virtual void Kernel(tensorflow::OpKernelContext* context,
127  const tensorflow::Tensor& points,
128  const tensorflow::Tensor& row_splits,
129  const tensorflow::Tensor& voxel_size,
130  const tensorflow::Tensor& points_range_min,
131  const tensorflow::Tensor& points_range_max) = 0;
132 
133 protected:
134  tensorflow::int64 max_points_per_voxel;
135  tensorflow::int64 max_voxels;
136 };
137 
138 } // namespace voxelize_opkernel
#define CHECK_SHAPE(tensor,...)
Definition: TorchHelper.h:205
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t int32_t
Definition: K4aPlugin.cpp:398
Class for dimensions for which the value should be inferred.
Definition: ShapeChecking.h:69
int points
Definition: FilePCD.cpp:73
ImGuiContext * context
Definition: Window.cpp:95
Definition: ShapeChecking.h:35