Loading [MathJax]/extensions/TeX/AMSsymbols.js
Open3D (C++ API)  0.14.1
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
VoxelPoolingOpKernel.h
Go to the documentation of this file.
1 // ----------------------------------------------------------------------------
2 // - Open3D: www.open3d.org -
3 // ----------------------------------------------------------------------------
4 // The MIT License (MIT)
5 //
6 // Copyright (c) 2018-2021 www.open3d.org
7 //
8 // Permission is hereby granted, free of charge, to any person obtaining a copy
9 // of this software and associated documentation files (the "Software"), to deal
10 // in the Software without restriction, including without limitation the rights
11 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 // copies of the Software, and to permit persons to whom the Software is
13 // furnished to do so, subject to the following conditions:
14 //
15 // The above copyright notice and this permission notice shall be included in
16 // all copies or substantial portions of the Software.
17 //
18 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 // IN THE SOFTWARE.
25 // ----------------------------------------------------------------------------
26 
27 #pragma once
28 
30 #include "tensorflow/core/framework/op.h"
31 #include "tensorflow/core/framework/op_kernel.h"
32 #include "tensorflow/core/lib/core/errors.h"
33 
35 // namespace for code that is common for all kernels
36 namespace voxel_pooling_opkernel {
37 
38 template <class TReal, class TFeat>
39 class OutputAllocator {
40 public:
41  OutputAllocator(tensorflow::OpKernelContext* context) : context(context) {}
42 
43  void AllocPooledPositions(TReal** ptr, size_t num) {
44  using namespace tensorflow;
45  *ptr = nullptr;
46  Tensor* tensor = 0;
47  TensorShape shape({int64_t(num), 3});
48  OP_REQUIRES_OK(context, context->allocate_output(0, shape, &tensor));
49  auto flat_tensor = tensor->flat<TReal>();
50  *ptr = flat_tensor.data();
51  }
52 
53  void AllocPooledFeatures(TFeat** ptr, size_t num, int channels) {
54  using namespace tensorflow;
55  *ptr = nullptr;
56  Tensor* tensor = 0;
57  TensorShape shape({int64_t(num), channels});
58  OP_REQUIRES_OK(context, context->allocate_output(1, shape, &tensor));
59  auto flat_tensor = tensor->flat<TFeat>();
60  *ptr = flat_tensor.data();
61  }
62 
63 private:
64  tensorflow::OpKernelContext* context;
65 };
66 
67 // Base class with common code for the OpKernel implementations
68 class VoxelPoolingOpKernel : public tensorflow::OpKernel {
69 public:
70  explicit VoxelPoolingOpKernel(
71  tensorflow::OpKernelConstruction* construction)
72  : OpKernel(construction) {
73  using namespace tensorflow;
74  using namespace open3d::ml::impl;
75  std::string pos_fn_str;
76  OP_REQUIRES_OK(construction,
77  construction->GetAttr("position_fn", &pos_fn_str));
78 
79  if (pos_fn_str == "average")
80  position_fn = AVERAGE;
81  else if (pos_fn_str == "nearest_neighbor")
82  position_fn = NEAREST_NEIGHBOR;
83  else
84  position_fn = CENTER;
85 
86  std::string feat_fn_str;
87  OP_REQUIRES_OK(construction,
88  construction->GetAttr("feature_fn", &feat_fn_str));
89 
90  if (feat_fn_str == "average")
91  feature_fn = AVERAGE;
92  else if (feat_fn_str == "nearest_neighbor")
93  feature_fn = NEAREST_NEIGHBOR;
94  else
95  feature_fn = MAX;
96 
97  OP_REQUIRES_OK(construction, construction->GetAttr("debug", &debug));
98  }
99 
100  void Compute(tensorflow::OpKernelContext* context) override {
101  using namespace tensorflow;
102  using namespace open3d::ml::impl;
103  const Tensor& positions = context->input(0);
104  OP_REQUIRES(
105  context, positions.shape().dims() == 2,
106  errors::InvalidArgument("positions must be a rank 2 tensor"));
107 
108  const Tensor& features = context->input(1);
109  OP_REQUIRES(
110  context, features.shape().dims() == 2,
111  errors::InvalidArgument("features must be a rank 2 tensor"));
112 
113  const Tensor& voxel_size = context->input(2);
114  OP_REQUIRES(
115  context, TensorShapeUtils::IsScalar(voxel_size.shape()),
116  errors::InvalidArgument("voxel_size must be a scalar, but is ",
117  voxel_size.shape().DebugString()));
118 
119  Kernel(context, positions, features, voxel_size);
120  }
121 
122  // Function with the device specific code
123  virtual void Kernel(tensorflow::OpKernelContext* context,
124  const tensorflow::Tensor& positions,
125  const tensorflow::Tensor& features,
126  const tensorflow::Tensor& voxel_size) = 0;
127 
128 protected:
131  bool debug;
132 };
133 
134 } // namespace voxel_pooling_opkernel
Definition: VoxelPooling.h:40
Definition: VoxelPooling.h:40
Definition: VoxelPooling.h:40
ImGuiContext * context
Definition: Window.cpp:95
Definition: ContinuousConv.h:35
AccumulationFn
Definition: VoxelPooling.h:40
Definition: VoxelPooling.h:40