29 #include <tbb/parallel_for.h> 82 const size_t points_row_splits_size,
83 const int64_t* points_row_splits,
85 const size_t hash_table_cell_splits_size,
91 const int batch_size = points_row_splits_size - 1;
92 const T voxel_size = 2 * radius;
93 const T inv_voxel_size = 1 / voxel_size;
95 memset(&hash_table_cell_splits[0], 0,
96 sizeof(
uint32_t) * hash_table_cell_splits_size);
99 for (
int i = 0; i < batch_size; ++i) {
100 const size_t hash_table_size =
101 hash_table_splits[i + 1] - hash_table_splits[i];
102 const size_t first_cell_idx = hash_table_splits[i];
104 tbb::blocked_range<int64_t>(points_row_splits[i],
105 points_row_splits[i + 1]),
106 [&](
const tbb::blocked_range<int64_t>& r) {
107 for (int64_t i = r.begin(); i != r.end(); ++i) {
108 Vec3_t pos(points + 3 * i);
118 &hash_table_cell_splits[first_cell_idx + hash +
125 &hash_table_cell_splits[hash_table_cell_splits_size],
126 &hash_table_cell_splits[0]);
128 std::vector<uint32_t> count_tmp(hash_table_cell_splits_size - 1, 0);
131 for (
int i = 0; i < batch_size; ++i) {
132 const size_t hash_table_size =
133 hash_table_splits[i + 1] - hash_table_splits[i];
134 const size_t first_cell_idx = hash_table_splits[i];
136 tbb::blocked_range<size_t>(points_row_splits[i],
137 points_row_splits[i + 1]),
138 [&](
const tbb::blocked_range<size_t>& r) {
139 for (
size_t i = r.begin(); i != r.end(); ++i) {
140 Vec3_t pos(points + 3 * i);
148 [hash_table_cell_splits[hash + first_cell_idx] +
150 &count_tmp[hash + first_cell_idx],
174 template <
int METRIC,
class TDerived,
int VECSIZE>
175 Eigen::Array<typename TDerived::Scalar, VECSIZE, 1> NeighborsDist(
176 const Eigen::ArrayBase<TDerived>& p,
177 const Eigen::Array<typename TDerived::Scalar, VECSIZE, 3>& points) {
178 typedef Eigen::Array<typename TDerived::Scalar, VECSIZE, 1> VecN_t;
182 if (METRIC ==
Linf) {
183 dist = (points.rowwise() - p.transpose()).abs().rowwise().maxCoeff();
184 }
else if (METRIC ==
L1) {
185 dist = (points.rowwise() - p.transpose()).abs().rowwise().sum();
187 dist = (points.rowwise() - p.transpose()).square().rowwise().sum();
195 class OUTPUT_ALLOCATOR,
197 bool IGNORE_QUERY_POINT,
198 bool RETURN_DISTANCES>
199 void _FixedRadiusSearchCPU(int64_t* query_neighbors_row_splits,
201 const T*
const points,
203 const T*
const queries,
205 const size_t points_row_splits_size,
206 const int64_t*
const points_row_splits,
207 const size_t queries_row_splits_size,
208 const int64_t*
const queries_row_splits,
209 const uint32_t*
const hash_table_splits,
210 const size_t hash_table_cell_splits_size,
211 const uint32_t*
const hash_table_cell_splits,
212 const uint32_t*
const hash_table_index,
213 OUTPUT_ALLOCATOR& output_allocator) {
219 typedef Eigen::Array<T, VECSIZE, 1> Vec_t;
220 typedef Eigen::Array<int32_t, VECSIZE, 1> Veci_t;
222 typedef Eigen::Array<T, 3, 1> Pos_t;
223 typedef Eigen::Array<T, VECSIZE, 3> Poslist_t;
224 typedef Eigen::Array<bool, VECSIZE, 1> Result_t;
226 const int batch_size = points_row_splits_size - 1;
229 if (num_points == 0 || num_queries == 0) {
230 std::fill(query_neighbors_row_splits,
231 query_neighbors_row_splits + num_queries + 1, 0);
233 output_allocator.AllocIndices(&indices_ptr, 0);
236 output_allocator.AllocDistances(&distances_ptr, 0);
242 const T threshold = (METRIC ==
L2 ? radius * radius : radius);
244 const T voxel_size = 2 * radius;
245 const T inv_voxel_size = 1 / voxel_size;
249 size_t num_indices = 0;
254 for (
int i = 0; i < batch_size; ++i) {
255 const size_t hash_table_size =
256 hash_table_splits[i + 1] - hash_table_splits[i];
257 const size_t first_cell_idx = hash_table_splits[i];
259 tbb::blocked_range<size_t>(queries_row_splits[i],
260 queries_row_splits[i + 1]),
261 [&](
const tbb::blocked_range<size_t>& r) {
262 size_t num_indices_local = 0;
263 for (
size_t i = r.begin(); i != r.end(); ++i) {
264 size_t neighbors_count = 0;
266 Vec3_t pos(queries + i * 3);
268 std::set<size_t> bins_to_visit;
275 bins_to_visit.insert(first_cell_idx + hash);
277 for (
int dz = -1; dz <= 1; dz += 2)
278 for (
int dy = -1; dy <= 1; dy += 2)
279 for (
int dx = -1; dx <= 1; dx += 2) {
281 pos + radius * Vec3_t(T(dx), T(dy),
287 bins_to_visit.insert(first_cell_idx + hash);
293 for (
size_t bin : bins_to_visit) {
294 size_t begin_idx = hash_table_cell_splits[bin];
295 size_t end_idx = hash_table_cell_splits[bin + 1];
297 for (
size_t j = begin_idx; j < end_idx; ++j) {
299 if (IGNORE_QUERY_POINT) {
300 if (points[idx * 3 + 0] == pos[0] &&
301 points[idx * 3 + 1] == pos[1] &&
302 points[idx * 3 + 2] == pos[2])
305 xyz(vec_i, 0) = points[idx * 3 + 0];
306 xyz(vec_i, 1) = points[idx * 3 + 1];
307 xyz(vec_i, 2) = points[idx * 3 + 2];
310 Pos_t pos_arr(pos[0], pos[1], pos[2]);
311 Vec_t dist = NeighborsDist<METRIC, Pos_t,
314 Result_t test_result = dist <= threshold;
315 neighbors_count += test_result.count();
322 Pos_t pos_arr(pos[0], pos[1], pos[2]);
323 Vec_t dist = NeighborsDist<METRIC, Pos_t, VECSIZE>(
325 Result_t test_result = dist <= threshold;
326 for (
int k = 0; k < vec_i; ++k) {
327 neighbors_count +=
int(test_result(k));
331 num_indices_local += neighbors_count;
333 query_neighbors_row_splits[i + 1] = neighbors_count;
344 output_allocator.AllocIndices(&indices_ptr, num_indices);
348 if (RETURN_DISTANCES)
349 output_allocator.AllocDistances(&distances_ptr, num_indices);
351 output_allocator.AllocDistances(&distances_ptr, 0);
353 query_neighbors_row_splits[0] = 0;
355 query_neighbors_row_splits + num_queries + 1,
356 query_neighbors_row_splits + 1);
359 for (
int i = 0; i < batch_size; ++i) {
360 const size_t hash_table_size =
361 hash_table_splits[i + 1] - hash_table_splits[i];
362 const size_t first_cell_idx = hash_table_splits[i];
364 tbb::blocked_range<size_t>(queries_row_splits[i],
365 queries_row_splits[i + 1]),
366 [&](
const tbb::blocked_range<size_t>& r) {
367 for (
size_t i = r.begin(); i != r.end(); ++i) {
368 size_t neighbors_count = 0;
370 size_t indices_offset = query_neighbors_row_splits[i];
372 Vec3_t pos(queries[i * 3 + 0], queries[i * 3 + 1],
375 std::set<size_t> bins_to_visit;
382 bins_to_visit.insert(first_cell_idx + hash);
384 for (
int dz = -1; dz <= 1; dz += 2)
385 for (
int dy = -1; dy <= 1; dy += 2)
386 for (
int dx = -1; dx <= 1; dx += 2) {
388 pos + radius * Vec3_t(T(dx), T(dy),
394 bins_to_visit.insert(first_cell_idx + hash);
401 for (
size_t bin : bins_to_visit) {
402 size_t begin_idx = hash_table_cell_splits[bin];
403 size_t end_idx = hash_table_cell_splits[bin + 1];
405 for (
size_t j = begin_idx; j < end_idx; ++j) {
406 int64_t idx = hash_table_index[j];
407 if (IGNORE_QUERY_POINT) {
408 if (points[idx * 3 + 0] == pos[0] &&
409 points[idx * 3 + 1] == pos[1] &&
410 points[idx * 3 + 2] == pos[2])
413 xyz(vec_i, 0) = points[idx * 3 + 0];
414 xyz(vec_i, 1) = points[idx * 3 + 1];
415 xyz(vec_i, 2) = points[idx * 3 + 2];
416 idx_vec(vec_i) = idx;
419 Pos_t pos_arr(pos[0], pos[1], pos[2]);
420 Vec_t dist = NeighborsDist<METRIC, Pos_t,
423 Result_t test_result = dist <= threshold;
424 for (
int k = 0; k < vec_i; ++k) {
425 if (test_result(k)) {
426 indices_ptr[indices_offset +
429 if (RETURN_DISTANCES) {
430 distances_ptr[indices_offset +
435 neighbors_count +=
int(test_result(k));
443 Pos_t pos_arr(pos[0], pos[1], pos[2]);
444 Vec_t dist = NeighborsDist<METRIC, Pos_t, VECSIZE>(
446 Result_t test_result = dist <= threshold;
447 for (
int k = 0; k < vec_i; ++k) {
448 if (test_result(k)) {
449 indices_ptr[indices_offset +
450 neighbors_count] = idx_vec[k];
451 if (RETURN_DISTANCES) {
452 distances_ptr[indices_offset +
457 neighbors_count +=
int(test_result(k));
547 template <
class T,
class OUTPUT_ALLOCATOR>
549 const size_t num_points,
551 const size_t num_queries,
552 const T*
const queries,
554 const size_t points_row_splits_size,
555 const int64_t*
const points_row_splits,
556 const size_t queries_row_splits_size,
557 const int64_t*
const queries_row_splits,
558 const uint32_t*
const hash_table_splits,
559 const size_t hash_table_cell_splits_size,
560 const uint32_t*
const hash_table_cell_splits,
561 const uint32_t*
const hash_table_index,
563 const bool ignore_query_point,
564 const bool return_distances,
565 OUTPUT_ALLOCATOR& output_allocator) {
568 #define FN_PARAMETERS \ 569 query_neighbors_row_splits, num_points, points, num_queries, queries, \ 570 radius, points_row_splits_size, points_row_splits, \ 571 queries_row_splits_size, queries_row_splits, hash_table_splits, \ 572 hash_table_cell_splits_size, hash_table_cell_splits, \ 573 hash_table_index, output_allocator 575 #define CALL_TEMPLATE(METRIC, IGNORE_QUERY_POINT, RETURN_DISTANCES) \ 576 if (METRIC == metric && IGNORE_QUERY_POINT == ignore_query_point && \ 577 RETURN_DISTANCES == return_distances) \ 578 _FixedRadiusSearchCPU<T, OUTPUT_ALLOCATOR, METRIC, IGNORE_QUERY_POINT, \ 579 RETURN_DISTANCES>(FN_PARAMETERS); 581 #define CALL_TEMPLATE2(METRIC) \ 582 CALL_TEMPLATE(METRIC, true, true) \ 583 CALL_TEMPLATE(METRIC, true, false) \ 584 CALL_TEMPLATE(METRIC, false, true) \ 585 CALL_TEMPLATE(METRIC, false, false) 587 #define CALL_TEMPLATE3 \ 595 #undef CALL_TEMPLATE2 596 #undef CALL_TEMPLATE3
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t timeout_in_ms capture_handle capture_handle capture_handle image_handle temperature_c k4a_image_t image_handle uint8_t image_handle image_handle image_handle image_handle uint32_t
Definition: K4aPlugin.cpp:557
Definition: NeighborSearchCommon.h:38
HOST_DEVICE size_t SpatialHash(int x, int y, int z)
Spatial hashing function for integer coordinates.
Definition: NeighborSearchCommon.h:47
void InclusivePrefixSum(const Tin *first, const Tin *last, Tout *out)
Definition: ParallelScan.h:85
Metric
Supported metrics.
Definition: NeighborSearchCommon.h:38
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t int32_t
Definition: K4aPlugin.cpp:398
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample uint64_t
Definition: K4aPlugin.cpp:352
void FixedRadiusSearchCPU(int64_t *query_neighbors_row_splits, const size_t num_points, const T *const points, const size_t num_queries, const T *const queries, const T radius, const size_t points_row_splits_size, const int64_t *const points_row_splits, const size_t queries_row_splits_size, const int64_t *const queries_row_splits, const uint32_t *const hash_table_splits, const size_t hash_table_cell_splits_size, const uint32_t *const hash_table_cell_splits, const uint32_t *const hash_table_index, const Metric metric, const bool ignore_query_point, const bool return_distances, OUTPUT_ALLOCATOR &output_allocator)
Definition: FixedRadiusSearchImpl.h:548
Definition: NeighborSearchCommon.h:38
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t timeout_in_ms capture_handle capture_handle capture_handle image_handle temperature_c int
Definition: K4aPlugin.cpp:479
void BuildSpatialHashTableCPU(const Tensor &points, double radius, const Tensor &points_row_splits, const Tensor &hash_table_splits, Tensor &hash_table_index, Tensor &hash_table_cell_splits)
Definition: FixedRadiusSearchOps.cpp:40
Definition: PinholeCameraIntrinsic.cpp:35
uint32_t AtomicFetchAddRelaxed(uint32_t *address, uint32_t val)
Definition: Atomic.h:44
Definition: Dispatch.h:110
Definition: NeighborSearchCommon.h:38
HOST_DEVICE utility::MiniVec< int, 3 > ComputeVoxelIndex(const TVecf &pos, const typename TVecf::Scalar_t &inv_voxel_size)
Definition: NeighborSearchCommon.h:61