Loading [MathJax]/extensions/TeX/AMSsymbols.js
Open3D (C++ API)  0.14.1
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
FixedRadiusSearchImpl.h
Go to the documentation of this file.
1 // ----------------------------------------------------------------------------
2 // - Open3D: www.open3d.org -
3 // ----------------------------------------------------------------------------
4 // The MIT License (MIT)
5 //
6 // Copyright (c) 2018-2021 www.open3d.org
7 //
8 // Permission is hereby granted, free of charge, to any person obtaining a copy
9 // of this software and associated documentation files (the "Software"), to deal
10 // in the Software without restriction, including without limitation the rights
11 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 // copies of the Software, and to permit persons to whom the Software is
13 // furnished to do so, subject to the following conditions:
14 //
15 // The above copyright notice and this permission notice shall be included in
16 // all copies or substantial portions of the Software.
17 //
18 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 // IN THE SOFTWARE.
25 // ----------------------------------------------------------------------------
26 
27 #pragma once
28 
29 #include <tbb/parallel_for.h>
30 
31 #include <set>
32 
33 #include "open3d/core/Atomic.h"
35 #include "open3d/utility/Eigen.h"
36 #include "open3d/utility/Helper.h"
38 
39 namespace open3d {
40 namespace core {
41 namespace nns {
42 namespace impl {
43 
44 namespace {
45 
78 template <class T>
79 void BuildSpatialHashTableCPU(const size_t num_points,
80  const T* const points,
81  const T radius,
82  const size_t points_row_splits_size,
83  const int64_t* points_row_splits,
84  const uint32_t* hash_table_splits,
85  const size_t hash_table_cell_splits_size,
86  uint32_t* hash_table_cell_splits,
87  uint32_t* hash_table_index) {
88  using namespace open3d::utility;
89  typedef MiniVec<T, 3> Vec3_t;
90 
91  const int batch_size = points_row_splits_size - 1;
92  const T voxel_size = 2 * radius;
93  const T inv_voxel_size = 1 / voxel_size;
94 
95  memset(&hash_table_cell_splits[0], 0,
96  sizeof(uint32_t) * hash_table_cell_splits_size);
97 
98  // compute number of points that map to each hash
99  for (int i = 0; i < batch_size; ++i) {
100  const size_t hash_table_size =
101  hash_table_splits[i + 1] - hash_table_splits[i];
102  const size_t first_cell_idx = hash_table_splits[i];
103  tbb::parallel_for(
104  tbb::blocked_range<int64_t>(points_row_splits[i],
105  points_row_splits[i + 1]),
106  [&](const tbb::blocked_range<int64_t>& r) {
107  for (int64_t i = r.begin(); i != r.end(); ++i) {
108  Vec3_t pos(points + 3 * i);
109 
110  auto voxel_index =
111  ComputeVoxelIndex(pos, inv_voxel_size);
112  size_t hash =
113  SpatialHash(voxel_index) % hash_table_size;
114 
115  // note the +1 because we want the first
116  // element to be 0
118  &hash_table_cell_splits[first_cell_idx + hash +
119  1],
120  1);
121  }
122  });
123  }
124  InclusivePrefixSum(&hash_table_cell_splits[0],
125  &hash_table_cell_splits[hash_table_cell_splits_size],
126  &hash_table_cell_splits[0]);
127 
128  std::vector<uint32_t> count_tmp(hash_table_cell_splits_size - 1, 0);
129 
130  // now compute the indices for hash_table_index
131  for (int i = 0; i < batch_size; ++i) {
132  const size_t hash_table_size =
133  hash_table_splits[i + 1] - hash_table_splits[i];
134  const size_t first_cell_idx = hash_table_splits[i];
135  tbb::parallel_for(
136  tbb::blocked_range<size_t>(points_row_splits[i],
137  points_row_splits[i + 1]),
138  [&](const tbb::blocked_range<size_t>& r) {
139  for (size_t i = r.begin(); i != r.end(); ++i) {
140  Vec3_t pos(points + 3 * i);
141 
142  auto voxel_index =
143  ComputeVoxelIndex(pos, inv_voxel_size);
144  size_t hash =
145  SpatialHash(voxel_index) % hash_table_size;
146 
147  hash_table_index
148  [hash_table_cell_splits[hash + first_cell_idx] +
150  &count_tmp[hash + first_cell_idx],
151  1)] = i;
152  }
153  });
154  }
155 }
156 
174 template <int METRIC, class TDerived, int VECSIZE>
175 Eigen::Array<typename TDerived::Scalar, VECSIZE, 1> NeighborsDist(
176  const Eigen::ArrayBase<TDerived>& p,
177  const Eigen::Array<typename TDerived::Scalar, VECSIZE, 3>& points) {
178  typedef Eigen::Array<typename TDerived::Scalar, VECSIZE, 1> VecN_t;
179  VecN_t dist;
180 
181  dist.setZero();
182  if (METRIC == Linf) {
183  dist = (points.rowwise() - p.transpose()).abs().rowwise().maxCoeff();
184  } else if (METRIC == L1) {
185  dist = (points.rowwise() - p.transpose()).abs().rowwise().sum();
186  } else {
187  dist = (points.rowwise() - p.transpose()).square().rowwise().sum();
188  }
189  return dist;
190 }
191 
194 template <class T,
195  class OUTPUT_ALLOCATOR,
196  int METRIC,
197  bool IGNORE_QUERY_POINT,
198  bool RETURN_DISTANCES>
199 void _FixedRadiusSearchCPU(int64_t* query_neighbors_row_splits,
200  size_t num_points,
201  const T* const points,
202  size_t num_queries,
203  const T* const queries,
204  const T radius,
205  const size_t points_row_splits_size,
206  const int64_t* const points_row_splits,
207  const size_t queries_row_splits_size,
208  const int64_t* const queries_row_splits,
209  const uint32_t* const hash_table_splits,
210  const size_t hash_table_cell_splits_size,
211  const uint32_t* const hash_table_cell_splits,
212  const uint32_t* const hash_table_index,
213  OUTPUT_ALLOCATOR& output_allocator) {
214  using namespace open3d::utility;
215 
216 // number of elements for vectorization
217 #define VECSIZE 8
218  typedef MiniVec<T, 3> Vec3_t;
219  typedef Eigen::Array<T, VECSIZE, 1> Vec_t;
220  typedef Eigen::Array<int32_t, VECSIZE, 1> Veci_t;
221 
222  typedef Eigen::Array<T, 3, 1> Pos_t;
223  typedef Eigen::Array<T, VECSIZE, 3> Poslist_t;
224  typedef Eigen::Array<bool, VECSIZE, 1> Result_t;
225 
226  const int batch_size = points_row_splits_size - 1;
227 
228  // return empty output arrays if there are no points
229  if (num_points == 0 || num_queries == 0) {
230  std::fill(query_neighbors_row_splits,
231  query_neighbors_row_splits + num_queries + 1, 0);
232  int32_t* indices_ptr;
233  output_allocator.AllocIndices(&indices_ptr, 0);
234 
235  T* distances_ptr;
236  output_allocator.AllocDistances(&distances_ptr, 0);
237 
238  return;
239  }
240 
241  // use squared radius for L2 to avoid sqrt
242  const T threshold = (METRIC == L2 ? radius * radius : radius);
243 
244  const T voxel_size = 2 * radius;
245  const T inv_voxel_size = 1 / voxel_size;
246 
247  // counts the number of indices we have to return. This is the number of all
248  // neighbors we find.
249  size_t num_indices = 0;
250 
251  // count the number of neighbors for all query points and update num_indices
252  // and populate query_neighbors_row_splits with the number of neighbors
253  // for each query point
254  for (int i = 0; i < batch_size; ++i) {
255  const size_t hash_table_size =
256  hash_table_splits[i + 1] - hash_table_splits[i];
257  const size_t first_cell_idx = hash_table_splits[i];
258  tbb::parallel_for(
259  tbb::blocked_range<size_t>(queries_row_splits[i],
260  queries_row_splits[i + 1]),
261  [&](const tbb::blocked_range<size_t>& r) {
262  size_t num_indices_local = 0;
263  for (size_t i = r.begin(); i != r.end(); ++i) {
264  size_t neighbors_count = 0;
265 
266  Vec3_t pos(queries + i * 3);
267 
268  std::set<size_t> bins_to_visit;
269 
270  auto voxel_index =
271  ComputeVoxelIndex(pos, inv_voxel_size);
272  size_t hash =
273  SpatialHash(voxel_index) % hash_table_size;
274 
275  bins_to_visit.insert(first_cell_idx + hash);
276 
277  for (int dz = -1; dz <= 1; dz += 2)
278  for (int dy = -1; dy <= 1; dy += 2)
279  for (int dx = -1; dx <= 1; dx += 2) {
280  Vec3_t p =
281  pos + radius * Vec3_t(T(dx), T(dy),
282  T(dz));
283  voxel_index = ComputeVoxelIndex(
284  p, inv_voxel_size);
285  hash = SpatialHash(voxel_index) %
286  hash_table_size;
287  bins_to_visit.insert(first_cell_idx + hash);
288  }
289 
290  Poslist_t xyz;
291  int vec_i = 0;
292 
293  for (size_t bin : bins_to_visit) {
294  size_t begin_idx = hash_table_cell_splits[bin];
295  size_t end_idx = hash_table_cell_splits[bin + 1];
296 
297  for (size_t j = begin_idx; j < end_idx; ++j) {
298  uint32_t idx = hash_table_index[j];
299  if (IGNORE_QUERY_POINT) {
300  if (points[idx * 3 + 0] == pos[0] &&
301  points[idx * 3 + 1] == pos[1] &&
302  points[idx * 3 + 2] == pos[2])
303  continue;
304  }
305  xyz(vec_i, 0) = points[idx * 3 + 0];
306  xyz(vec_i, 1) = points[idx * 3 + 1];
307  xyz(vec_i, 2) = points[idx * 3 + 2];
308  ++vec_i;
309  if (VECSIZE == vec_i) {
310  Pos_t pos_arr(pos[0], pos[1], pos[2]);
311  Vec_t dist = NeighborsDist<METRIC, Pos_t,
312  VECSIZE>(pos_arr,
313  xyz);
314  Result_t test_result = dist <= threshold;
315  neighbors_count += test_result.count();
316  vec_i = 0;
317  }
318  }
319  }
320  // process the tail
321  if (vec_i) {
322  Pos_t pos_arr(pos[0], pos[1], pos[2]);
323  Vec_t dist = NeighborsDist<METRIC, Pos_t, VECSIZE>(
324  pos_arr, xyz);
325  Result_t test_result = dist <= threshold;
326  for (int k = 0; k < vec_i; ++k) {
327  neighbors_count += int(test_result(k));
328  }
329  vec_i = 0;
330  }
331  num_indices_local += neighbors_count;
332  // note the +1
333  query_neighbors_row_splits[i + 1] = neighbors_count;
334  }
335 
336  core::AtomicFetchAddRelaxed((uint64_t*)&num_indices,
337  num_indices_local);
338  });
339  }
340 
341  // Allocate output arrays
342  // output for the indices to the neighbors
343  int32_t* indices_ptr;
344  output_allocator.AllocIndices(&indices_ptr, num_indices);
345 
346  // output for the distances
347  T* distances_ptr;
348  if (RETURN_DISTANCES)
349  output_allocator.AllocDistances(&distances_ptr, num_indices);
350  else
351  output_allocator.AllocDistances(&distances_ptr, 0);
352 
353  query_neighbors_row_splits[0] = 0;
354  InclusivePrefixSum(query_neighbors_row_splits + 1,
355  query_neighbors_row_splits + num_queries + 1,
356  query_neighbors_row_splits + 1);
357 
358  // now populate the indices_ptr and distances_ptr array
359  for (int i = 0; i < batch_size; ++i) {
360  const size_t hash_table_size =
361  hash_table_splits[i + 1] - hash_table_splits[i];
362  const size_t first_cell_idx = hash_table_splits[i];
363  tbb::parallel_for(
364  tbb::blocked_range<size_t>(queries_row_splits[i],
365  queries_row_splits[i + 1]),
366  [&](const tbb::blocked_range<size_t>& r) {
367  for (size_t i = r.begin(); i != r.end(); ++i) {
368  size_t neighbors_count = 0;
369 
370  size_t indices_offset = query_neighbors_row_splits[i];
371 
372  Vec3_t pos(queries[i * 3 + 0], queries[i * 3 + 1],
373  queries[i * 3 + 2]);
374 
375  std::set<size_t> bins_to_visit;
376 
377  auto voxel_index =
378  ComputeVoxelIndex(pos, inv_voxel_size);
379  size_t hash =
380  SpatialHash(voxel_index) % hash_table_size;
381 
382  bins_to_visit.insert(first_cell_idx + hash);
383 
384  for (int dz = -1; dz <= 1; dz += 2)
385  for (int dy = -1; dy <= 1; dy += 2)
386  for (int dx = -1; dx <= 1; dx += 2) {
387  Vec3_t p =
388  pos + radius * Vec3_t(T(dx), T(dy),
389  T(dz));
390  voxel_index = ComputeVoxelIndex(
391  p, inv_voxel_size);
392  hash = SpatialHash(voxel_index) %
393  hash_table_size;
394  bins_to_visit.insert(first_cell_idx + hash);
395  }
396 
397  Poslist_t xyz;
398  Veci_t idx_vec;
399  int vec_i = 0;
400 
401  for (size_t bin : bins_to_visit) {
402  size_t begin_idx = hash_table_cell_splits[bin];
403  size_t end_idx = hash_table_cell_splits[bin + 1];
404 
405  for (size_t j = begin_idx; j < end_idx; ++j) {
406  int64_t idx = hash_table_index[j];
407  if (IGNORE_QUERY_POINT) {
408  if (points[idx * 3 + 0] == pos[0] &&
409  points[idx * 3 + 1] == pos[1] &&
410  points[idx * 3 + 2] == pos[2])
411  continue;
412  }
413  xyz(vec_i, 0) = points[idx * 3 + 0];
414  xyz(vec_i, 1) = points[idx * 3 + 1];
415  xyz(vec_i, 2) = points[idx * 3 + 2];
416  idx_vec(vec_i) = idx;
417  ++vec_i;
418  if (VECSIZE == vec_i) {
419  Pos_t pos_arr(pos[0], pos[1], pos[2]);
420  Vec_t dist = NeighborsDist<METRIC, Pos_t,
421  VECSIZE>(pos_arr,
422  xyz);
423  Result_t test_result = dist <= threshold;
424  for (int k = 0; k < vec_i; ++k) {
425  if (test_result(k)) {
426  indices_ptr[indices_offset +
427  neighbors_count] =
428  idx_vec[k];
429  if (RETURN_DISTANCES) {
430  distances_ptr[indices_offset +
431  neighbors_count] =
432  dist[k];
433  }
434  }
435  neighbors_count += int(test_result(k));
436  }
437  vec_i = 0;
438  }
439  }
440  }
441  // process the tail
442  if (vec_i) {
443  Pos_t pos_arr(pos[0], pos[1], pos[2]);
444  Vec_t dist = NeighborsDist<METRIC, Pos_t, VECSIZE>(
445  pos_arr, xyz);
446  Result_t test_result = dist <= threshold;
447  for (int k = 0; k < vec_i; ++k) {
448  if (test_result(k)) {
449  indices_ptr[indices_offset +
450  neighbors_count] = idx_vec[k];
451  if (RETURN_DISTANCES) {
452  distances_ptr[indices_offset +
453  neighbors_count] =
454  dist[k];
455  }
456  }
457  neighbors_count += int(test_result(k));
458  }
459  vec_i = 0;
460  }
461  }
462  });
463  }
464 #undef VECSIZE
465 }
466 
467 } // namespace
468 
547 template <class T, class OUTPUT_ALLOCATOR>
548 void FixedRadiusSearchCPU(int64_t* query_neighbors_row_splits,
549  const size_t num_points,
550  const T* const points,
551  const size_t num_queries,
552  const T* const queries,
553  const T radius,
554  const size_t points_row_splits_size,
555  const int64_t* const points_row_splits,
556  const size_t queries_row_splits_size,
557  const int64_t* const queries_row_splits,
558  const uint32_t* const hash_table_splits,
559  const size_t hash_table_cell_splits_size,
560  const uint32_t* const hash_table_cell_splits,
561  const uint32_t* const hash_table_index,
562  const Metric metric,
563  const bool ignore_query_point,
564  const bool return_distances,
565  OUTPUT_ALLOCATOR& output_allocator) {
566  // Dispatch all template parameter combinations
567 
568 #define FN_PARAMETERS \
569  query_neighbors_row_splits, num_points, points, num_queries, queries, \
570  radius, points_row_splits_size, points_row_splits, \
571  queries_row_splits_size, queries_row_splits, hash_table_splits, \
572  hash_table_cell_splits_size, hash_table_cell_splits, \
573  hash_table_index, output_allocator
574 
575 #define CALL_TEMPLATE(METRIC, IGNORE_QUERY_POINT, RETURN_DISTANCES) \
576  if (METRIC == metric && IGNORE_QUERY_POINT == ignore_query_point && \
577  RETURN_DISTANCES == return_distances) \
578  _FixedRadiusSearchCPU<T, OUTPUT_ALLOCATOR, METRIC, IGNORE_QUERY_POINT, \
579  RETURN_DISTANCES>(FN_PARAMETERS);
580 
581 #define CALL_TEMPLATE2(METRIC) \
582  CALL_TEMPLATE(METRIC, true, true) \
583  CALL_TEMPLATE(METRIC, true, false) \
584  CALL_TEMPLATE(METRIC, false, true) \
585  CALL_TEMPLATE(METRIC, false, false)
586 
587 #define CALL_TEMPLATE3 \
588  CALL_TEMPLATE2(L1) \
589  CALL_TEMPLATE2(L2) \
590  CALL_TEMPLATE2(Linf)
591 
593 
594 #undef CALL_TEMPLATE
595 #undef CALL_TEMPLATE2
596 #undef CALL_TEMPLATE3
597 #undef FN_PARAMETERS
598 }
599 
600 } // namespace impl
601 } // namespace nns
602 } // namespace core
603 } // namespace open3d
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t timeout_in_ms capture_handle capture_handle capture_handle image_handle temperature_c k4a_image_t image_handle uint8_t image_handle image_handle image_handle image_handle uint32_t
Definition: K4aPlugin.cpp:557
Definition: NeighborSearchCommon.h:38
HOST_DEVICE size_t SpatialHash(int x, int y, int z)
Spatial hashing function for integer coordinates.
Definition: NeighborSearchCommon.h:47
void InclusivePrefixSum(const Tin *first, const Tin *last, Tout *out)
Definition: ParallelScan.h:85
Metric
Supported metrics.
Definition: NeighborSearchCommon.h:38
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t int32_t
Definition: K4aPlugin.cpp:398
int points
Definition: FilePCD.cpp:73
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample uint64_t
Definition: K4aPlugin.cpp:352
void FixedRadiusSearchCPU(int64_t *query_neighbors_row_splits, const size_t num_points, const T *const points, const size_t num_queries, const T *const queries, const T radius, const size_t points_row_splits_size, const int64_t *const points_row_splits, const size_t queries_row_splits_size, const int64_t *const queries_row_splits, const uint32_t *const hash_table_splits, const size_t hash_table_cell_splits_size, const uint32_t *const hash_table_cell_splits, const uint32_t *const hash_table_index, const Metric metric, const bool ignore_query_point, const bool return_distances, OUTPUT_ALLOCATOR &output_allocator)
Definition: FixedRadiusSearchImpl.h:548
Definition: NeighborSearchCommon.h:38
#define VECSIZE
const char const char value recording_handle imu_sample recording_handle uint8_t size_t data_size k4a_record_configuration_t config target_format k4a_capture_t capture_handle k4a_imu_sample_t imu_sample playback_handle k4a_logging_message_cb_t void min_level device_handle k4a_imu_sample_t timeout_in_ms capture_handle capture_handle capture_handle image_handle temperature_c int
Definition: K4aPlugin.cpp:479
#define CALL_TEMPLATE3
void BuildSpatialHashTableCPU(const Tensor &points, double radius, const Tensor &points_row_splits, const Tensor &hash_table_splits, Tensor &hash_table_index, Tensor &hash_table_cell_splits)
Definition: FixedRadiusSearchOps.cpp:40
Definition: PinholeCameraIntrinsic.cpp:35
uint32_t AtomicFetchAddRelaxed(uint32_t *address, uint32_t val)
Definition: Atomic.h:44
Definition: Dispatch.h:110
Definition: NeighborSearchCommon.h:38
Definition: MiniVec.h:43
HOST_DEVICE utility::MiniVec< int, 3 > ComputeVoxelIndex(const TVecf &pos, const typename TVecf::Scalar_t &inv_voxel_size)
Definition: NeighborSearchCommon.h:61