open3d.ml.torch.pipelines.ObjectDetection¶
-
class
open3d.ml.torch.pipelines.ObjectDetection(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)¶ Pipeline for object detection.
-
__init__(model, dataset=None, name='ObjectDetection', main_log_dir='./logs/', device='cuda', split='train', **kwargs)¶ Initialize.
- Parameters
model – A network model.
dataset – A dataset, or None for inference model.
devce – ‘gpu’ or ‘cpu’.
kwargs –
- Returns
The corresponding class.
- Return type
class
-
load_ckpt(ckpt_path=None, is_resume=True)¶
-
run_inference(data)¶ Run inference on given data.
- Parameters
data – A raw data.
- Returns
Returns the inference results.
-
run_test()¶ Run test with test data split, computes mean average precision of the prediction results.
-
run_train()¶ Run training with train data split.
-
run_valid()¶ Run validation with validation data split, computes mean average precision and the loss of the prediction results.
-
save_ckpt(epoch)¶
-
save_config(writer)¶ Save experiment configuration with tensorboard summary.
-
save_logs(writer, epoch)¶
-